
总结Python编程中三条常用的技巧
在 python 代码中可以看到一些常见的 trick,在这里做一个简单的小结。
json 字符串格式化
在开发 web 应用的时候经常会用到 json 字符串,但是一段比较长的 json 字符串是可读性较差的,不容易看出来里面结构的。 这时候就可以用 python 来把 json 字符串漂亮的打印出来。
root@Exp-1:/tmp# cat json.txt
{"menu": {"breakfast": {"English Muffin": {"price": 7.5}, "Bread Basket": {"price": 20, "desc": "Assortment of fresh baked fruit breads and muffins"}, "Fruit Breads": {"price": 8}}, "drink": {"Hot Tea": {"price": 5}, "Juice": {"price": 10, "type": ["apple", "watermelon", "orange"]}}}}
root@Exp-1:/tmp#
root@Exp-1:/tmp# cat json.txt | python -m json.tool
{
"menu": {
"breakfast": {
"Bread Basket": {
"desc": "Assortment of fresh baked fruit breads and muffins",
"price": 20
},
"English Muffin": {
"price": 7.5
},
"Fruit Breads": {
"price": 8
}
},
"drink": {
"Hot Tea": {
"price": 5
},
"Juice": {
"price": 10,
"type": [
"apple",
"watermelon",
"orange"
]
}
}
}
}
root@Exp-1:/tmp#
else 的妙用
在某些场景下我们需要判断我们是否是从一个 for 循环中 break 跳出来的,并且只针对 break 跳出的情况做相应的处理。这时候我们通常的做法是使用一个 flag 变量来标识是否是从 for 循环中跳出的。 如下面的这个例子,查看在 60 到 80 之间是否存在 17 的倍数。
flag = False
for item in xrange(60, 80):
if item % 17 == 0:
flag = True
break
if flag:
print "Exists at least one number can be divided by 17"
其实这时候可以使用 else 在不引入新变量的情况下达到同样的效果
for item in xrange(60, 80):
if item % 17 == 0:
flag = True
break
else:
print "exist"
setdefault 方法
dictionary 是 python 一个很强大的内置数据结构,但是使用起来还是有不方便的地方,比如在多层嵌套的时候我们通常会这么写
dyna_routes = {}
method = 'GET'
whole_rule = None
# 一些其他的逻辑处理
...
if method in dyna_routes:
dyna_routes[method].append(whole_rule)
else:
dyna_routes[method] = [whole_rule]
其实还有一种更简单的写法可以达到同样的效果
self.dyna_routes.setdefault(method, []).append(whole_rule)
或者可以使用 collections.defaultdict 模块
import collections
dyna_routes = collections.defaultdict(list)
...
dyna_routes[method].append(whole_rule)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01