京公网安备 11010802034615号
经营许可证编号:京B2-20210330
美零售业遭遇大数据烦恼
说到“大数据”时,一般人首先想到的就是各类社交媒体、电信通讯商等科技企业;然而另一个涉及密集用户数据的行业是零售业。
在这个颇为传统的行业中,“大数据”同时夹杂着风险和盈利。零售业巨头们动辄手握百万甚至千万消费者的购买数据或信用卡数据,但在数据安全管理上漏洞百出,售卖数据之后获得的盈利,也因为当前会计准则的限制而并不能出现在潜在投资者眼前。
黑客爱超市
黑客们除了喜欢攻击各种银行网络或者窃取邮件密码,接下来排得上号的最爱攻击的对象大概就是那些连锁零售商们了。大型连锁超市遍布各地,上百万的顾客付款信息却都储存在同一个系统里,安全意识或者抵抗攻击水平却又比不上银行或者其他科技公司。这大概解释了为什么这几年美国零售巨头们几乎是轮流遭到数据偷窃,导致几千万顾客的信用卡信息泄露。
就在今年9月,大型家居连锁店家得宝(Home Depot)成为了最新一家顾客支付信息遇窃的零售商。据初步分析,泄露事件可能已经波及家得宝公司遍布全美的2200家分店。这意味着大约有400万张信用卡或储蓄卡信息被盗。
除了家得宝外,最近一系列零售商比如食品超市连锁“超价商店”、美式中餐连锁P.F.Chang等都被黑客盗取顾客信息。同样在9月,慈善二手商店Goodwill称,其顾客的信用卡信息在超过300家分店遇窃。
去年年底的美国连锁零售商Target遭入侵事件,算得上是近年来支付卡行业遭遇到的一个巨大历史拐点。当时,Target公司的网络遭到黑客入侵,共有4000万顾客的支付卡信息被盗。
事件发生后,Target公司直到现在还在试图消除残余影响。信息被盗事件伤害了公司的股价和声誉,Target还需要花上1亿美元在其1800家店铺增强信息安全防卫措施。
除了餐饮超市等零售业外,酒店业的数据泄露也让许多顾客汗毛倒立。服务业信息泄露风险敞口之大已经让消费者对商家是否能够有力保护个人数据的信心降至冰点。
不能入账的盈利
顾客的银行支付信息给零售商们带来了风险,但另一部分数据则是金光闪闪。
拥有2600家连锁超市的美国克罗格公司记录着每一位顾客的购买数据,同时还能追踪共550万会员的购买历史。克罗格公司对这些数据进行分析后,再转手卖给各种从苏打水到燕麦片的供货商。还有类似宝洁和雀巢这样的消费品生产商对这些数据都非常感兴趣,希望能从数据中得出顾客偏好来帮助产品设计和市场营销。
有分析机构认为克罗格仅凭出售这些数据就能获得每年1亿美元的收入。克罗格公司对此保持沉默,只是称自己遵循了会计一般原则。根据这些原则,公司不能将所掌握数据作为资产计算,也不能将因收集和分析数据而付出的成本作为对公司的投资。
克罗格公司可以靠这些数据获得额外的收益,但还并未真正充分利用这些数据的潜在价值。比如由于无法在公司财报中体现公司拥有大数据的当前或者未来价值,这部分内容在投资者眼里实际上成了盲区,往往会让投资者低估公司发展潜力。
越来越多的公司开始靠信息交易和大数据分析工具来拓宽盈利渠道,但如何将大数据作为一项资产来评估?这在当前的商业界中还是空白。要评估大数据,公司需要对自己数据的保质期做出估算,需要持续跟踪其价值以及随时可能发生的变化。想要对比如工厂厂房在内的有形资产进行估值很容易,但对大数据潜在价值做出估算方面好像还没有先例。
无形资产相当于大半个欧洲GDP
美国费城联邦储备银行经济学家伦纳德·纳卡穆拉(Leonard Nakamura)在一项研究中称,所有商业公司的无形资产总和估价高达8万亿美元,相当于德国、法国和意大利三国GDP的总和。这些无形资产中包括专利、商标权和版权,还包括大数据。
这些无形资产在全球经济中所扮演的角色正在日益重要。比如在过去几年诸如谷歌、苹果和三星等科技巨头发起的一系列并购、诉讼,本质上都是围绕着专利权的归属问题。但这些无形资产都没有出现在公司财务报表中。
“我们希望有更多关于无形资产的会计信息,这样才能更好地理解公司正在如何投资于未来增长。”纳卡穆拉说。
鉴于如今的经济结构越来越依赖信息和知识产权,美国财务会计准则委员会正在致力于更新会计准则。早在2002年和2007年,美国财务会计准则委员会就曾两次对无形资产的问题提出过讨论,但每次都在分歧前不了了之。直到今年9月,委员会的一些顾问再次提出了这个问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22