
融都网贷系统:P2P平台大数据应用三大难点
大数据无疑是近些年的流行词。购物,缴费,贷款等等,生活中无数场景,我们都在形成和使用数据。这些数据以不同维度勾画出一个较为立体的信用形象,进而方便评估、辨识金融活动中的借贷风险。
它比央行征信,内容更丰富,角度更多维,适用更广泛。正是基于这种优势,大数据近年颇受政府重视。融都网贷系统了解到,先是,放开民间征信,批准8家民间机构的准备工作,后报告、考察、拟发放个人征信牌照。9月5日,国务院更是下发《国务院关于印发促进大数据发展行动纲要的通知》,鼓励推动公共信息资源共享和大数据产业的健康发展。
互联网金融中,以P2P网贷为例,大数据的优势体现在:第一,优化资产获得能力;第二,提升平台风险识别和定价能力;第三,实现资金端的精准营销,降低获客成本;第四,有助于平台构造多元化的场景,增加P2P平台与理财客户的粘稠度。
但另一方面,大数据的应用仅是近几年的事,体系的不成熟无法不正视。正如著名商业思想家纳西姆塔勒布曾指出的,“数据会制造出更大的噪音,这就如同在干草垛中寻找一根针,当我们拨开干草垛时,要找的那根针被越埋越深。”
如何降低庞大数据带来的“噪音”,是大数据真正发挥作用的重点,也是难点。融都网贷系统认为,具体到大数据在P2P领域应用,还需突破以下三方面限制:
第一,作为大数据核心的“大”,不仅仅是数据来源和量级,更重要的是通过怎样的方式,用多长的时间积累出来。当P2P平台试图利用海量数据预测人群社会行为,进而借以区别出资产优劣时,单一时间点或短暂时间跨度内的数据很容易进行仿造,导致反欺诈模型的甄别精度降低。而即便这些数据均真实有效,对于正确预测人群行为模式、提升平台的资产识别能力也是收效甚微。因此,大数据风控的刚性成本不在于钱,而在于如何获得蕴含时间价值的有效数据。
第二,应用场景。从联结有效性的角度来看,数据具有边际效应,也就是说任何数据都无法做到在每种特定应用场景之下都发挥同等的效果。例如,阿里巴巴15年积累的网络交易数据用于对自己商户的放贷可以实现良好的批核率和精确性,但又有谁能保证这些数据迁移到汽车代销网站或旅游网站上也同样有效呢?所以我们才看到阿里巴巴战略投资苏宁云商,其目的之一便是阿里借苏宁消费者样本,弥补自身数据多元性短板。
第三,数据处理能力。P2P平台如何针对自身每条业务线的场景特点,总结出所需数据的类型,并在浩如烟海的数据源中有针对性地加以筛选,决定了整个风控体系根基的稳固与否。这也引发了几乎所有P2P平台在大数据应用中的第三个短板——数据处理能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07