
融都网贷系统:P2P平台大数据应用三大难点
大数据无疑是近些年的流行词。购物,缴费,贷款等等,生活中无数场景,我们都在形成和使用数据。这些数据以不同维度勾画出一个较为立体的信用形象,进而方便评估、辨识金融活动中的借贷风险。
它比央行征信,内容更丰富,角度更多维,适用更广泛。正是基于这种优势,大数据近年颇受政府重视。融都网贷系统了解到,先是,放开民间征信,批准8家民间机构的准备工作,后报告、考察、拟发放个人征信牌照。9月5日,国务院更是下发《国务院关于印发促进大数据发展行动纲要的通知》,鼓励推动公共信息资源共享和大数据产业的健康发展。
互联网金融中,以P2P网贷为例,大数据的优势体现在:第一,优化资产获得能力;第二,提升平台风险识别和定价能力;第三,实现资金端的精准营销,降低获客成本;第四,有助于平台构造多元化的场景,增加P2P平台与理财客户的粘稠度。
但另一方面,大数据的应用仅是近几年的事,体系的不成熟无法不正视。正如著名商业思想家纳西姆塔勒布曾指出的,“数据会制造出更大的噪音,这就如同在干草垛中寻找一根针,当我们拨开干草垛时,要找的那根针被越埋越深。”
如何降低庞大数据带来的“噪音”,是大数据真正发挥作用的重点,也是难点。融都网贷系统认为,具体到大数据在P2P领域应用,还需突破以下三方面限制:
第一,作为大数据核心的“大”,不仅仅是数据来源和量级,更重要的是通过怎样的方式,用多长的时间积累出来。当P2P平台试图利用海量数据预测人群社会行为,进而借以区别出资产优劣时,单一时间点或短暂时间跨度内的数据很容易进行仿造,导致反欺诈模型的甄别精度降低。而即便这些数据均真实有效,对于正确预测人群行为模式、提升平台的资产识别能力也是收效甚微。因此,大数据风控的刚性成本不在于钱,而在于如何获得蕴含时间价值的有效数据。
第二,应用场景。从联结有效性的角度来看,数据具有边际效应,也就是说任何数据都无法做到在每种特定应用场景之下都发挥同等的效果。例如,阿里巴巴15年积累的网络交易数据用于对自己商户的放贷可以实现良好的批核率和精确性,但又有谁能保证这些数据迁移到汽车代销网站或旅游网站上也同样有效呢?所以我们才看到阿里巴巴战略投资苏宁云商,其目的之一便是阿里借苏宁消费者样本,弥补自身数据多元性短板。
第三,数据处理能力。P2P平台如何针对自身每条业务线的场景特点,总结出所需数据的类型,并在浩如烟海的数据源中有针对性地加以筛选,决定了整个风控体系根基的稳固与否。这也引发了几乎所有P2P平台在大数据应用中的第三个短板——数据处理能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23