
python+mongodb数据抓取详细介绍
Python数据抓取分析
编程模块:requests,lxml,pymongo,time,BeautifulSoup
首先获取所有产品的分类网址:
def step():
try:
headers = {
。。。。。
}
r = requests.get(url,headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
url = soup.find_all(正则表达式)
for i in url:
url2 = i.find_all('a')
for j in url2:
step1url =url + j['href']
print step1url
step2(step1url)
except Exception,e:
print e
我们在产品分类的同时需要确定我们所访问的地址是产品还是又一个分类的产品地址(所以需要判断我们访问的地址是否含有if判断标志):
def step2(step1url):
try:
headers = {
。。。。
}
r = requests.get(step1url,headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
a = soup.find('div',id='divTbl')
if a:
url = soup.find_all('td',class_='S-ITabs')
for i in url:
classifyurl = i.find_all('a')
for j in classifyurl:
step2url = url + j['href']
#print step2url
step3(step2url)
else:
postdata(step1url)
当我们if判断后为真则将第二页的分类网址获取到(第一个步骤),否则执行postdata函数,将网页产品地址抓取!
def producturl(url):
try:
p1url = doc.xpath(正则表达式)
for i in xrange(1,len(p1url) + 1):
p2url = doc.xpath(正则表达式)
if len(p2url) > 0:
producturl = url + p2url[0].get('href')
count = db[table].find({'url':producturl}).count()
if count <= 0:
sn = getNewsn()
db[table].insert({"sn":sn,"url":producturl})
print str(sn) + 'inserted successfully'
else:
'url exist'
except Exception,e:
print e
其中为我们所获取到的产品地址并存入mongodb中,sn作为地址的新id。
下面我们需要在mongodb中通过新id索引来获取我们的网址并进行访问,对产品进行数据分析并抓取,将数据更新进数据库内!
其中用到最多的BeautifulSoup这个模块,但是对于存在于js的价值数据使用BeautifulSoup就用起来很吃力,所以对于js中的数据我推荐使用xpath,但是解析网页就需要用到HTML.document_fromstring(url)方法来解析网页。
对于xpath抓取价值数据的同时一定要细心!如果想了解xpath就在下面留言,我会尽快回答!
def parser(sn,url):
try:
headers = {
。。。。。。
}
r = requests.get(url, headers=headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
dt = {}
#partno
a = soup.find("meta",itemprop="mpn")
if a:
dt['partno'] = a['content']
#manufacturer
b = soup.find("meta",itemprop="manufacturer")
if b:
dt['manufacturer'] = b['content']
#description
c = soup.find("span",itemprop="description")
if c:
dt['description'] = c.get_text().strip()
#price
price = soup.find("table",class_="table table-condensed occalc_pa_table")
if price:
cost = {}
for i in price.find_all('tr'):
if len(i) > 1:
td = i.find_all('td')
key=td[0].get_text().strip().replace(',','')
val=td[1].get_text().replace(u'\u20ac','').strip()
if key and val:
cost[key] = val
if cost:
dt['cost'] = cost
dt['currency'] = 'EUR'
#quantity
d = soup.find("input",id="ItemQuantity")
if d:
dt['quantity'] = d['value']
#specs
e = soup.find("div",class_="row parameter-container")
if e:
key1 = []
val1= []
for k in e.find_all('dt'):
key = k.get_text().strip().strip('.')
if key:
key1.append(key)
for i in e.find_all('dd'):
val = i.get_text().strip()
if val:
val1.append(val)
specs = dict(zip(key1,val1))
if specs:
dt['specs'] = specs
print dt
if dt:
db[table].update({'sn':sn},{'$set':dt})
print str(sn) + ' insert successfully'
time.sleep(3)
else:
error(str(sn) + '\t' + url)
except Exception,e:
error(str(sn) + '\t' + url)
print "Don't data!"
最后全部程序运行,将价值数据分析处理并存入数据库中!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15