
传统零售业的精准营销:大数据的魅力
当前互联网公司对数据挖掘可谓赖以生存。目前几乎所有的用户体验产生的数据都可以进行数据挖掘。从传统零售企业走电子商务,到亚马逊,淘宝网的精准营销,大数据给企业带来的价值不断凸显。说到大数据,很难不提到传统的数据处理,以及大数据对于整个零售行业的影响,那么我们应该怎么理解大数据呢?
国内大数据公司信柏科技CEO柏林森指出:大数据是一个动态的洞察、清晰的预测的过程。有了洞察就可以慢慢走进预测。举例来说,对于传统的零售企业来说,他的零售模式就会遇到数据瓶颈。以前商家自己其实不知道是哪位顾客来买他的东西,就算商家有了顾客的会员卡,但是如果顾客不掏出这张卡来也是无法知道顾客是谁,即使掏出来会员卡也无法知道顾客的消费偏好及个人家庭情况等。但是有了大数据分析之后,可以对消费者进行全方位的分析,描述消费者画像,从而对其开展个性化精准营销。
那么,大数据能够让传统零售业脱困吗?业内有两种观点。有人认为大数据只是一个数据量的加大。从kb,MB,到GB和TB,计算能力的增强必然导致数据更多;另一种观点是大数据把原始数据从date变成了信息,再把信息变成了商业。
所以大数据是一个很好的工具,关键是如何是使用好这个工具,换算成数值理论的说法,就是怎么建立网络,怎样建立商业模式。举个例子,商品在超市里面卖,这个卖商品就不是一个简单的过程。超市需要根据顾客的习惯,在不同时间,不同时段推出不同的款产品,通过什么的样的方式进行销售......这些复杂的过程都需要通过大数据的分析结果进行商品配合和销售。
随着大数据商业应用的发展,越来越多的企业认识到大数据的价值,那么怎么利用创新型的大数据?一个生动的例子能够很好的诠释大数据。在抗日战争时期,军团指挥官往往能通过缴获的枪支和装备来确定敌军司令部的位置。因为缴获的装备高级,很大程度上就代表着司令部的位置。这个虽然不是大数据处理的典型例子,但是可以很好解释如何利用创新型的大数据技术。
其次,还需要大数据团队的支持。一个企业首先要有数据驱动的意识,作为企业的带头人应该首先做一个决策,但是决策制定后,需要一个团队进行支持。因为很多大数据的应用都是在执行层面,如何对数据进行整合,需要各个系统的数据模型。
总之,传统零售业向电子商务大数据转变时,首先要进行决策分析、数据分析,数据整合,团队执行,这样才是一个理想的大数据变革。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29