
互联网时代 实体商业该如何应用大数据
实体商业在中国的发展是“0到1”的过程,即从匮乏到丰富, 全、大是其优势。但是,区别于海外商业地产的发展,国内实体商业在羽翼尚未丰满的过程中,就已直面互联网的挑战。在此背景下,实体商业的转型应关注三个关键词:
第一,迭代:“泛90后”成为消费人流主体之后,其消费理念的巨变对于商业的影响需要重点关注。
第二,去交易化:在“互联网+”时代,各类渠道都在争抢实体商业的客流,实体商业渠道的意义在减弱。
第三,强主题:主题要求的背后是人群对于实体商业情感以及价值观认同的需求。
2014年年底,全球移动通信系统协会提供的数据显示,世界上移动设备的数量首次超过人口总数。这是否意味着实体商业没有发展空间了?实际上,互联网技术改变了原有生态系统的进化周期,同时,也会推动传统行业进行变革,它们之间并非替代的关系。网店冲击实体商业,攻占了便利交易的渠道;移动终端的开发,降低了衣食住行的外向机会,但它们各有所长,互有补充。如何互补,就需要掌握两者的特性,做好大数据的应用。
对于商业地产的大数据应用,我们需要注意,大数据不等于有效数据。比如,大家都有类似的经验,即某一个文件自己确信存储过,但是需要的时候却无论如何也找不到。也就是说,目前各类PC端、移动端可带来海量数据,但是,数据众多且分散在各种载体、渠道中,分布稀疏分散,呈现海量的碎片化形态,没有按需收集,且也没有按照模型整理,并不是有效的数据。那么,如何得到有效的数据呢?
我们认为,中国的实体商业发展历史与国外是不同的,原有的发展多是“下游思维”,也就是无限向往地向海外学习经验。但是在当下,国内快速迭代的项目已经提供了丰富的比照和前沿的探索,让大家可以从“上游思维”切入。相比产品、技术等层面,从“人”的层面分析更有效,这就需要分析消费者属性、行为轨迹、特定人群分布、消费偏好以及发展趋势。
目前,研究产业互联网有两种思维模式,将互联网技术作为核心则为“互联网+”,而将产业作为价值核心延伸则是“N+互联网”。对于商业而言,实体商业拥抱互联网技术的核心优势是基于场所、产品、服务的运营管理。
无论实体商业还是虚拟商业,目标只有一个,就是争抢消费者的时间,为此需要做的事情均为提升平台效率。辨明线上线下的相似与不同,需要从互补、极尽各长的角度,提升导流、汇聚、交易、维护的价值,创造闭环方式进行运作,方能有效提升实体商业的平台效率及价值。
这就需要我们把数据变成“有效数据”,有目的性采集再去应用,而人在生活场景中产生的数据才是真实数据。大家可以想一下,在百度里输入任何一个词的时候,你的记录就会被留下,会被标签化,在当当买什么书都会有标签。交叉分析后再筛选推荐,所以你买过这本书后,他们还会推荐其他类似的书。
但是互联网数据解决不了“去标签”,这很关键。购物中心应该满足社交人群的商务社交,还是生活状态的亲子社交,需要考虑。但我们不用透过大数据,而是透过人口的采集,通过标准化工具就可以完成。比如,北京的华润五彩城,有18万平方米的体量,定位为情感商业。原因在何?因为北京北五环、中关村东面每天都有6万到7万的人流量,这些人不看重自己标签,他们更看重孩子的培养教育。
在这种情况下,大数据能帮我们做三到五公里的客观人流量,人流到访频次,行为轨迹的习惯,消费者在电商平台的购物偏好等。我们通过加标签和去标签的过程,用大数据让商业回归本质,让消费者为交易和服务付费。
强调一点,做实体商业不要总想着一步到位,很多购物中心一上来就是开发APP,却没有想到在没有会员量的时候,要花费多大的成本去吸引会员。其实现在不缺技术,但是实体商业自身没有意识到去积累会员资源,也没有把会员服务好。运营会员数据的能力是稀缺的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15