
视频云时代挑战下云计算、大数据技术及其应用
近年来,云计算、云存储、大数据等技术在互联网行业得到了高速发展,技术、产品都得到了较好的市场检验,已被全社会广泛认可。在安防行业,在市场客观需求引领下,主流厂商积极将相关技术引入到行业内,并结合行业特征进行演进,推动云计算、云存储、大数据在行业内的高速发展,同时推出一系列广受市场认可的产品与理念,而云计算、云存储产品也成为各主流厂商主在有关平安城市解决方案中的核心系统之一,这其中所应用的核心技术就成为了衡量所属公司行业地位的关键指标。
视频监控技术趋势一:系统集成下的产品融合
顺应业务发展需求,视频监控行业产品逐渐出现了融合的趋势。一台主机部署多种模块可以提供多样的服务,例如存储、流媒体、管理系统、计算单元等一体化部署的产品,或者一台持续多虚拟机的存储服务器等。一个产品融合多种软件功能模块,提供一体化的解决方案,具备非常好的竞争优势。但同时,多模块混合部署,对各模块资源需求都比较高,因为在有限硬件资源下既要实现资源隔离,又要充分发挥硬件性能,避免额外的开销,又需要具备足够的弹性调整能力。其中容器技术具备众多优势,特别是作为一个轻量级的虚拟化技术手段,结合合理的管理软件系统,以及应用软件系统的配额,会是一个非常好的发展方向。
视频监控技术趋势二:业态趋于多样化
云计算、大数据时代下的视频监控行业的发展塑造业务形态多样化趋势。而互联网化的趋势和应用场景要求革新着传统视频监控行业的发展模式,如更低码流、更高并发度、直播点播、更友好的终端体验等。与此同时,随着国家大力推动智慧城市和平安城市的建设,视频监控行业也逐渐融入到其他行业的布建中,与其他行业形成互补优势,因而视频监控解决方案成为了各行业解决方案中的关键部分,所以这就对视频监控系统的平台开放性、接口合理性等性能提出了非常高的要求。
安防是真正的“大数据”行业
安防是一个真正的“大数据”行业,具备有别于其它行业的专属特征,如何突破安防数据应用瓶颈,带来海量价值,就给相关的技术提出了巨大挑战。
安防行业的数据主要来源于海量的监控摄像头,以一个高清摄像头为例(码流为4Mbps),一个月产生的数据量约为1.2TB,而一个中等城市部署的摄像头数量可达数万只,因此一个月一个中等城市可产生几十PB的视频数据积累。
面对海量的视频数据,传统的存储系统并未改善视频数据价值密度低的问题,并且系统建设成本敏感和性价比低的问题普遍存在。
在此背景下,可以能满足视频流数据的持续性、高强度的读写需求的高性能系统视频云存储系统应运而生。可基于廉价存储服务器和低端高容量磁盘,以分布式存储技术为基础,采用纠删码技术实现成本和可靠性的完美兼顾,同时提供为视频流式特征进行优化,又不失通用性的对象存储能力,可以满足视频存储业务需求,又符合云计算技术发展对存储提出的开放共享要求。
云计算的兴起对视频数据的开放性、读取性能提出了不一样的要求,因此传统基于块的私有视频存储技术及相关方案会逐渐失去市场竞争优势。而逐渐加速发展的SSD(Solid State Drives)存储技术,也将应势给视频云存储的发展带来重大变革。
应用环境对云存储系统提出的诉求
视频监控获得的视频数据价值密度低是安防行业的通性。举公安领域为例:一台路面摄像头一个月产生的视频数据,也许仅仅只有数秒钟的内容是有价值的,但这数秒钟视频片段对于社会安全具有重大意义。而视频分析是一个非常耗计算资源的过程,单机形态的视频分析服务器计算能力普遍较弱。
因此,对视频云计算提出了较高的通用型的视频分析诉求:借助分布式计算系统能力,充分发挥多节点的并行计算能力,实现多类型视频的高效数据计算等。但是,市面上的视频分析技术难度普遍较高,技术成熟度又参差不齐,虽然视频分析算法近些年取得了非常显著的进步,部分算法也达到了非常好的应用效果,例如视频摘要、浓缩、车牌识别、车型分析等,而更低场景要求的人脸识别、人体特征分析算法效果等,依然与市场的高预期还是具有一定差距。
这就要求在自身云存储系统方面,要既要满足大容量、高可靠、高性能、易扩展、开放共享的视频图像存储基础上,同时又要具备庞大的视频图像计算能力;面向海量视频数据,快速检测提取活动目标,实现人、车、物分类,识别运动目标的特征属性,呈现目标快照和短时视频,解决了视频分析效率低下的问题,由“看视频” 变“搜目标”,一触即发、所想即所得;同时使用通用的分析型数据库,提供海量数据极速查询,嵌入特色安防数据分析能力,满足海量数据挖掘需求。
因而笔者预测,通用分布式视频计算框架,搭载成熟、丰富的智能算法,在未来几年将带给视频安防行业的产品和业务重大影响。
如何迎接视频云时代的挑战
现阶段,云存储、计算和大数据相关技术已经对安防行业,特别是视频监控行业,形成了深刻的影响,实现了重大的推进作用。但行业特征决定了技术在行业内的发展演进,借鉴互联网行业先进技术、经验,结合行业特征和业务目标,进行深度优化演进的系统,将拥有非常好的竞争优势。
而视频监控技术和安防领域的长期积累、先进的IT技术融合,互联网思维及持续创新能力的吸收,都是迎接视频云时代挑战不可或缺的关键因素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15