 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		Python基于递归算法实现的走迷宫问题
本文实例讲述了Python基于递归算法实现的走迷宫问题。分享给大家供大家参考,具体如下:
什么是递归?
简单地理解就是函数调用自身的过程就称之为递归。
什么时候用到递归?
	如果一个问题可以表示为更小规模的迭代运算,就可以使用递归算法。
迷宫问题:一个由0或1构成的二维数组中,假设1是可以移动到的点,0是不能移动到的点,如何从数组中间一个值为1的点出发,每一只能朝上下左右四个方向移动一个单位,当移动到二维数组的边缘,即可得到问题的解,类似的问题都可以称为迷宫问题。
	在python中可以使用list嵌套表示二维数组。假设一个6*6的迷宫,问题时从该数组坐标[3][3]出发,判断能不能成功的走出迷宫。    
maze=[[1,0,0,1,0,1],
   [1,1,1,0,1,0],
   [0,0,1,0,1,0],
   [0,1,1,1,0,0],
   [0,0,0,1,0,0],
   [1,0,0,0,0,0]]
针对这个迷宫问题,我们可以使用递归的思想很好的解决。对于数组中的一个点,该点的四个方向可以通过横纵坐标的加减轻松的表示,每当移动的一个可移动的点时候,整个问题又变为和初始状态一样的问题,继续搜索四个方向找可以移动的点,知道移动到数组的边缘。
	所以我们可以这样编码:    
# 判断坐标的有效性,如果超出数组边界或是不满足值为1的条件,说明该点无效返回False,否则返回True。
def valid(maze,x,y):
  if (x>=0 and x<len(maze) and y>=0 and y<len(maze[0]) and maze[x][y]==1):
    return True
  else:
    return False
# 移步函数实现
def walk(maze,x,y):
  # 如果位置是迷宫的出口,说明成功走出迷宫
  if(x==0 and y==0):
    print("successful!")
    return True
  # 递归主体实现
  if valid(maze,x,y):
    # print(x,y)
    maze[x][y]=2 # 做标记,防止折回
    # 针对四个方向依次试探,如果失败,撤销一步
    if not walk(maze,x-1,y):
      maze[x][y]=1
    elif not walk(maze,x,y-1):
      maze[x][y]=1
    elif not walk(maze,x+1,y):
      maze[x][y]=1
    elif not walk(maze,x,y+1):
      maze[x][y]=1
    else:
      return False # 无路可走说明,没有解 
  return True
walk(maze,3,3)
递归是个好东西呀!
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21