京公网安备 11010802034615号
经营许可证编号:京B2-20210330
让老赖无处遁形:如何用大数据实现高效追债
自从互联网金融普及之后,贷款变得越来越容易。例如,蚂蚁借呗等信用借贷类产品,用户只需通过手机app进行注册申请,无需抵押就能轻松获得数万元贷款额度。这也符合国务院普惠金融的发展规划,降低准入门槛,让金融产品惠及更多人。
然而,降低准入门槛也意味着金融机构面临着更大的违约风险,需要建立更加完善的风险控制和贷后管理体系,而大数据是该体系中的重要一环。今天我们就来聊一聊如何通过大数据让老赖无处遁形。
准入控制:如何从茫茫人海辨别老赖?
这里有两个识别老赖的通用办法:
(1)黑名单
最简单直接的方式是建立数据库来记录个人和企业的贷款还款信息,有不良记录的个人或企业纳入“黑名单”,将被拒绝授予信用额度或贷款。
当前,最权威的数据库当然是人民银行的征信系统,在办理住房贷款的时候,银行通常会要求贷款申请人提供个人征信报告,详细记录贷款记录和名下信用卡信息。
然而,征信报告并不会反映所有的贷款信息,比如蚂蚁花呗/借呗等互联网小额贷款记录就不会出现在征信报告中。如果你觉得可以利用这一点找各家机构贷款、随意逾期,那就太天真了。机构之间通常会共享各自的数据,进入一家机构的黑名单也就意味着你很难在其他地方贷到款了。
另外,现在有一些互联网公司正利用自己积累的运营数据提供类似“黑名单”的功能或服务。例如,腾讯手机管家支持号码举报,假设你的手机号被很多用户举报为诈骗电话,这必然会影响你的贷款成功率。
(2)风险模型
黑名单其实只对已知信息的个人或企业有效,金融机构每天都需要处理大量来自新用户的贷款申请,其中不免会有已更换手机号或冒用他人身份的老赖。这时候就该数据挖掘发挥作用了。
通常存在逾期还款的用户都会有比较共性的特征,比如年龄较小、学历较低、手机在网时间短等特征。可以利用已有逾期还款记录的用户群建立一个逾期还款高风险人群的画像,建立基于规则或机器学习的风险模型来识别老赖和还款能力较差的申请者。
失联修复:如何用大数据找到欠债人?
针对恶意贷款逾期,最大的痛点在于如何找到欠债人。老赖通常会更换工作单位、住址和电话,很难通过常规渠道联系到欠债人。想要在欠债人老家门外蹲点守株待兔,那么只能祈祷奇迹出现了。
祈祷奇迹出现自然不靠谱。这时候大数据时代的一个强大工具——社交图谱就可以发挥作用了。
虽说老赖可以更换手机和住址,但在社交图谱中一定会留下一些蛛丝马迹,可以让人顺藤摸瓜来找到欠债人。
这里通过一个简单的图例来说明社交图谱的强大之处。
如上图所示,假设用户李小赖(化名)在苏宁金融有一笔贷款逾期,苏宁金融无法通过贷款账号对应的手机号1联系上李小赖,却可以通过李小赖登记的身份证号找到他在苏宁易购的账号和购买记录,将收货地址和收货手机号用于失联修复。另外,还可以利用运营商数据识别频繁联系的手机号作为扩展联系电话。
此外,社交图谱还可以包括设备MAC地址、IP等许多节点和关系类型。想要在社交图谱中完全隐形可是极其困难的。
如果真的有用户能够隐藏自己的行踪,会在社交图谱中形成孤立点或子图,这也会说明一些问题,这样的用户在准入环节就有可能被风险模型拒绝了。
追债环节:如何用大数据实现高效追债?
好了,假设我们已经知道老赖住哪、在哪上班,光靠电话提醒可能没法获得很好的追债效果。这时候,就需要追债人出马去找老赖当面动之以情、晓之以理了。
可是,金融机构的贷款业务通常是面向全国的,很难在各地都安排专门的追债员工,而打飞的、高铁千里迢迢去要债也是划不来的。
针对这种需求,国内已经有了好几个追债平台,提供类似滴滴出行一样的服务。金融机构将债务信息(如同滴滴出行的发布行程)发布到平台,由平台基于数据分析调度安排当地最匹配债务特点的追债公司(如同滴滴出行的快车)进行欠款追讨,这解决了金融机构找不到合适追债公司、追债公司没有足够业务的痛点。
最后,友情提醒一句:普惠金融时代,虽然贷款很方便,但还是要理性消费,注意按时还款,维护良好的信用记录。您可以在自己的手机上设定一列闹钟提醒各种还款日,这样能最大化利用免息期,也不会造成逾期。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15