京公网安备 11010802034615号
经营许可证编号:京B2-20210330
托夫勒才是这个世界上说出“大数据”这个词汇的第一人
上星期,世界著名未来学专家、著名的《第三次浪潮》作者托夫勒先生离开了他曾经预言过的这个世界。几天来,对他的辞世,国内媒体不仅广泛报道,而且刊发诸多评论和特写,详述他的预言、他的著作对我们今天生活的意义和影响。有评论称,“托夫勒走了,世界依然活在他的预言里”。
确实,托夫勒的未来三部曲《未来的冲击》、《第三次浪潮》、《权力的转移》不仅影响巨大,而且脍炙人口。特别是《第三次浪潮》,更几乎成为一本家喻户晓的经典之作。而未来学之所以可以成为一门科学,预言之所以既不同于预测、也不同于寓言和童话,就在于其可以基于对规律和科学的认识,准确地判断出未来的大事件和大趋势。
人们注意到的是,托夫勒预言,对整个人类而言,所谓第三次浪潮,就是在农业文明、工业文明之后的信息社会。但人们或许没有给予特别关注的是,托夫勒在《第三次浪潮》中,将大数据盛赞为“第三次浪潮的华彩乐章”。现在,很多研究者把大数据概念的提出,或归结为麦肯锡报告,或归结为IBM公司,其实,托夫勒才是这个世界上说出“大数据”这个词汇的第一人。
在托夫勒提出“大数据”这个词汇三十年之后,伴随着互联网的高度普及和信息化技术的极大发展,大数据迎风扑面、滚滚而来。对英文“Big Data”这个词汇,虽然没有统一公认的定义,但从脍炙人口的《第三次浪潮》,到颇具影响力的麦肯锡报告;从SGI公司的首席科学家,到高德纳公司的分析师;从达沃斯论坛的《大数据大影响》,到OECD统计委员会会议的《使用大数据做决策》;从涂子沛先生的《大数据》,到舍恩伯格先生的《大数据时代》,各方表述各有侧重,但实质大同小异,一是体量大;二是电子化产生;三是数据与技术的集成。
时至今日,托夫勒走了,大数据来了。你用还是不用,大数据就在那里,不是不多不少,而是越来越多。银行系统有海量的储户个人信息及存储信息,商场超市乃至互联网平台上有海量的商品信息及其价格信息;机场、火车站记录着许多乘客的出行情况,医院记录着许多病人的检查和治疗情况;门户网站每一条新闻下面的留言,汇集成对许多现象和问题的民意;微博微信中的喜怒哀乐,都是情感和态度的表达;百度、谷歌引擎的每一次使用,都可以说明IP那端键盘操作者到底想要什么;透过大气层中弥漫着的无数手机短信、微信,足以掌握无数手机使用者“打死也不说”的秘密。从我们不变的属性到可变的态度,都已经在一不留神之间,汇入了浩瀚的大数据洪流之中。大数据正在改变着我们的生活,而我们每个人也正因为自己生活方式的改变,而成为大数据浪潮中的一朵朵浪花。
大约一个多月前,中国国务院总理李克强在贵阳出席中国大数据产业峰会暨中国电子商务创新发展峰会时指出,大数据等新一代互联网技术深刻改变了世界,也让各国站在科技革命的同一起跑线上。中国曾屡次与世界科技革命失之交臂,今天要把握这一历史机遇,抢占先机,赢得未来。
诚如斯言。托夫勒走了,大数据来了。近代历次技术革命,中国都跟在别人身后,慢一步享受他人的研究成果和发明创造。大数据时代来了,大家的起点都一样。谁把握机遇,谁占得先机,谁就会赢得主动,就会率先创造和享用大数据的成果。
大数据来了,世界都在行动。早在2012年3月,美国奥巴马政府就颁布了《大数据的研究和发展计划》。世界其他国家也制定了相应的战略和规划,英国发布了《英国数据能力发展战略规划》;日本发布了《创建最尖端IT国家宣言》;韩国提出了“大数据中心战略”;新加坡政府则早在若干年前,就已经要求所有商业企业向政府统计部门提供电子交易记录,依据大数据进行价格及相关专业统计。我国政府也于2015年8月19日通过了《关于促进大数据发展的行动纲要》。各国都在行动,中国也不能落后。
要尽快完善法律。既要要求各级政府部门和大数据企业开放并提供数据,实现信息共享,也要有效保护国家秘密和个人隐私,还要对诸多利用大数据进行造假的行为进行防范和打击,以保证大数据的真实准确;要尽快明确分工。我们的政府机构是强大的,但需要有人牵头、有人组织、有人协调,合理分工,有效协作,防止扯皮,提高整体效率和各自的效能。
要尽快制定标准。要以现行标准为基础,充分考虑大数据的特点,统一研究并制定大数据代码标准、分类标准、统计标准、技术标准,以在不同大数据之间进行转换,切实提高其使用及分析价值。
托夫勒走了,大数据来了。即使我们不能像预言家那样远见卓识,至少我们不应该醒来太慢。因为在大数据时代,恰如马云所说,如果醒来太慢,就干脆不要醒来.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11