
AI、大数据、和数据科学的十大类算法
AI正在改变我们的职业、我们的工作方式和我们的企业文化。AI让我们得以专注于那些真正关键的技术,让人力资源得以充分发挥他们的长处。但在工作场景中应用AI确实会让事情变得复杂,因为有各种不同层级的算法可以用于实现AI,每一类的使用和影响都有差别。为了更好地平衡人力资本和AI资本,本文作者介绍了用于实现AI、大数据、和数据科学的十大类算法,以及它们分别擅长的任务。
算法正在取代我们的工作吗?是...是的...但算法是个好东西。
算法是一系列包含能够帮助人解决问题、完成目标任务的规则的步骤。用正确的方式把这些步骤和规则组织起来,能够自动化算法建立人工智能(AI)。AI能够帮助我们做大量的分析性工作,让我们把时间集中于更有价值的事情。
AI正在改变我们的职业、我们的工作方式和我们的企业文化。AI让我们得以专注于那些真正关键的技术,让人力资源得以充分发挥他们的长处。但在工作场景中应用AI确实会让事情变得复杂,因为有各种不同层级的算法可以用于实现AI,每一类的使用和影响都有差别。为了更好地平衡人力资本和AI资本,本文介绍了用于实现AI、大数据、和数据科学的十大类算法。
1. Crunchers
这些算法使用比较少的重复步骤和较为简单的规则处理(crunch)复杂问题。我们给这些算法提供数据,它们就能得出一个答案。如果我们不喜欢这个答案,可以给算法提供更多的数据,让算法调整答案。Cruncher类算法擅长客户分类、预估项目持续时间、分析调查数据等任务。
2. Guides
这些算法为我们怎样根据成功的历史操作得出最好的策略、步骤或工作流提供指南(guides)。指南类算法擅长协调大量需要理解并执行如风险管理、战略改变、复杂项目管理等事情的动态部件。
3. Advisors
这些算法基于历史规律为我们提供预测、排名、成功的可能性等,对我们提出最佳选择的建议(advise)。建议类(advisors)算法擅长提出决策、规划和风险缓解方面的建议。
4. Predictors
这些算法使用解释历史行为和历史事件的小型可重复性决定和判断来对未来的人类行为和事件作出预测。预测类(predictors)算法擅长商业规划、市场预测、品牌管理、健康诊断,以及预测消费者行为、品牌吸引力、欺诈行为、营销机会、气候事件以及疾病爆发等。
5. Tacticians
这些算法在战术上(tactically)预先考虑短期行为并作出相应的反应。它们通过应用短期战术规则(short-term tactical rules)的组合以及从相关人员中学来的信息做到这一点。战术类(tacticians)算法擅长平衡供应链、系统性能、人力工作负荷和生产线。
6. Strategists
这些算法从策略上(strategically)预测行为并作相应的计划。策略类(strategists)算法根据过去的数据发掘洞察和创新机会。它们通过应用短期规则和长期规则的组合、从相关人员中学来的信息以及这些人在不同的环境中的反应来做到这一点。策略类(strategists)算法擅长预测市场需求、客户流失、工作效率以及员工流失。
7. Lifters
这些算法能够代替我们自动完成重复性的任务,让我们能够专注于更有价值的工作。lifters类算法擅长分析和识别规则、欺诈行为、风险、改进、转型、机会和创新等中重复的模式和差距。
8. Partners
这些算法具有我们的领域中的许多专业知识,能让我们更高效、更专注。合作伙伴类(partners)算法擅长为我们提出建议、提供训练,让我们密切了解市场变化,并调整每日、每季度以及每年的目标。Partners理解我们的行为模式,知道我们何时应该吃午饭,气温达到几度时需要开空调等等。
9. Okays
这些算法在多个领域具有专业知识,能够代替我们的团队完成全部分析工作。算法完成分析后,团队中的每个人分别根据自己的专业技能审核分析结果,然后通过(okay)结果。Okays类算法擅长从各个角度深入分析物体构建大型图像,可用于业务规划、战略改变、文化转型等。
10. Supervisors
这些算法对我们的工作具有关键作用。它们能够管理工作者及其业务,使企业保持生产效率和财力的强健。监督类(supervisors)算法能够协调人力一起其他算法,帮助我们实现长期的战略发展目标。
AI是我们在全球商业舞台上生存的关键。仅以人类资本参与竞争是不够的,我们不仅需要AI来代替我们自动化工作,让我们的创新力有更大的发挥,而且需要AI 来改变我们的行为、习惯以及工作风格,以使我们保持竞争力。为了保持我们的竞争优势,我们必须理解AI如何工作,同时AI也必须理解我们如何工作。而为了理解我们如何工作,AI必须理解情绪智能(Emotional Intelligence)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15