京公网安备 11010802034615号
经营许可证编号:京B2-20210330
提高企业的竞争力和商业价值就得让数据流动起来
在企业的军火库里,信息是最有力的武器,一如人们时常宣称的,它们要比刀剑更锋利。强大的实时数据获取能力意味着公司上下将有能力做到快速响应的决策和精简的业务流程。信息必须不断地被传递、分享和追踪,好让整个公司能够洞悉一切,不仅知道正在发生什么,还知道将会发生什么,从而极...
1、复杂信息传输系统必须具备快速可靠的互用性,灵活整合不同的业务平台、各种各样的数据格式、传输协议、云存储、大数据、安全策略、数据库、电子表格、监测系统和其他很多方面。这意味着分别出自传统信息源和新信息源的业务数据可以在整个企业的数据拓扑结构中自由流动。信息必须能够可靠、安全地流动,而这是个不小的挑战。
2、系统管理员总是面临着安全性和能见度的不足。更糟的是,整套系统的成本最后远远高出了各个组成部分的成本加总。系统需要不断维护,手动操作最后只会消耗宝贵的IT资源。这种情况持续越久,系统就变得越糟糕、越昂贵。对你的公司而言,散沙般的系统永远不会等同于出色的数据整合。
3、在企业的军火库里,信息是最有力的武器,一如人们时常宣称的,它们要比刀剑更锋利。强大的实时数据获取能力意味着公司上下将有能力做到快速响应的决策和精简的业务流程。信息必须不断地被传递、分享和追踪,好让整个公司能够洞悉一切,不仅知道正在发生什么,还知道将会发生什么,从而极早、可靠地作出基于数据驱动的决策。
原文翻译:
世人普遍认为,拿破仑是位伟大的领袖和军事家。然而,尽管他的军队在欧洲战场上拥有诸多优势,包括更先进的武器、更密集的布阵和更强的机动性,但拿破仑最终还是难逃失败的命运。
滑铁卢是众所周知的拿破仑战败之地,但他失败的主要原因在于情报不畅,未能及时传达敌军逼近的关键信息。
在现今的商战中,信息至关重要。优秀的专业人才、最新式的设备,乃至最先进的工艺,都无法弥补通信能力的不足。在公司上下有效传递和分享关键数据点的能力是致胜之道。缺乏这种能力会妨碍企业的表现,不利于取得决定性的胜利。
随着数据驱动性能的新成果投入使用,常常带来颠覆性变化,这会影响整个公司,甚至改变业内传统的盈利模式。
例如,在零售业,大数据和预测分析会创造以消费者为中心的应用,改变了企业预测然后满足客户需求的方式。为了做到这些,零售商会对庞大的数据存储加以利用,从中发掘价值。企业数据人员利用数据挖掘得出的诸多发现来识别消费者的购买习惯。能够阐明购买决策过程的模式浮出水面,让零售商能够准确预测需求,优化对消费者的价值交付。这种以消费者为中心的数据使用方法,会推动企业的利润大幅增长。
在医疗保健业,供应商正在利用去身份化的临床数据,同时捕捉联网医疗设备和监测仪器产生的其他数据流,以及来自于诊断、治疗和监护服务的信息。通过分析,模式被转换成可执行的见解。通过对种类广泛的关联信息进行分析,医疗机构可以改善疗效、开发更好的药物、识别潜在风险和降低成本。
但是,在医疗保健业,数据分析带来的好处有赖于适时获取准确数据的能力。例如,想要弄清楚某种药物的已知副作用和使用该药物的患者群的再入院率之间有何关联,就需要护理过程的每一个环节都能获取可靠安全的信息。但是在这些见解的获取过程中阐发的诸多可能性,可能会带来更好的处方方法、更好的医学配方和更低的再入院率。
数据驱动见解的应用范围并不仅限于零售业和医疗保健业。能够提供无缝信息流的全面整合系统,完全有可能为所有行业保驾护航。
到头来,成为行业主要变革者的能力,就意味着能够产生可快速执行的可靠信息。这又反过来需要全方位的点到点业务信息整合。从提高整条供应链的效率,到利用客户亲密度,再到认清协同的真正潜力,对优化信息的整合到底能为我们提供些什么?
· 系统对系统自动化
· 系统对人工作流程
· 人对人协作
复杂信息传输系统必须具备快速可靠的互用性,灵活整合不同的业务平台、各种各样的数据格式、传输协议、云存储、大数据、安全策略、数据库、电子表格、监测系统和其他很多方面。这意味着分别出自传统信息源和新信息源的业务数据可以在整个企业的数据拓扑结构中自由流动。信息必须能够可靠、安全地流动,而这是个不小的挑战。
大多数机构都会在某个节点,尝试混合不同的传输系统——遗留下来的,内部开发的,还有其他存在各种兼容问题的,以此响应这种对整合的需求。企业其实并不是存心要设计一套过于复杂的系统,囊括所有不同因素,寄望该系统面面俱到,成为一个大而全的解决方案。只是东拼西凑的系统常常会自然而然地变得过于复杂。每当发现一个新需要,就添加一个新组件来满足,久而久之,复杂性变得越来越高,新的难题也随之涌现。全面整合系统方案反而变成了一种奢望——要有效地扩建企业的IT环境实在需要清晰的远见卓识。
如此一来,公司的业务完全建立在不同因素的脆弱组合之上。数据传输很少能得到保证。系统管理员总是面临着安全性和能见度的不足。更糟的是,整套系统的成本最后远远高出了各个组成部分的成本加总。系统需要不断维护,手动操作最后只会消耗宝贵的IT资源。这种情况持续越久,系统就变得越糟糕、越昂贵。对你的公司而言,散沙般的系统永远不会等同于出色的数据整合。
你会把你业务上的下一次重大突破寄托在一间错漏百出的机构身上吗?你能在一堆散沙上建造和支撑未来的系统吗?东拼西凑的系统能应付所有新的数据整合要求,使公司的业务更上一层楼吗?还是会需要你花很多钱再聘请一群顾问,从而掺入又一堆的散沙?
要是你可以满足当前所有的数据通信需求,同时符合面向未来的业务要求呢?你要如何保证未来能实现重大突破,并且提供完美无瑕的业务操作?要是你可以拥有可迅速部署的企业级解决方案,而无需多余的顾问呢?这会需要什么能力?一套可靠又可拓展的数据整合系统会如何革新你的业务模式?真正的问题是,你的公司是不是必须吃过苦头后才会开始考虑其它选项?遗留系统虽然触及面广,但扎根不深。如果整个系统都不堪使用,会出现什么后果?真的是时候打破陈规向前看了。
在企业的军火库里,信息是最有力的武器,一如人们时常宣称的,它们要比刀剑更锋利。强大的实时数据获取能力意味着公司上下将有能力做到快速响应的决策和精简的业务流程。信息必须不断地被传递、分享和追踪,好让整个公司能够洞悉一切,不仅知道正在发生什么,还知道将会发生什么,从而极早、可靠地作出基于数据驱动的决策。你的公司越能对商业环境的变化作出快速准确的反应,就越能取得好成绩。因此,整合远远不只是把东西凑在一块儿就完事。企业应该更有整体观地取悦消费者和合作伙伴。
整体性的数据整合方法必须考虑:
· 所有就业务流程和企业经营而言不可或缺的系统
· 所有负责文件传输、分享和协作的人员
· 所有流经整个企业数据拓扑结构的信息
我们所说的,是一种改善业务的现代方法。对企业信息动态、流程和业务以及客户忠诚度和行为预测的全面认知,将会提高企业的竞争力和商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21