
大数据技术支持精准扶贫模式创新
2013年11月,习近平总书记在湖南湘西考察时提出“精准扶贫”之后,政策实践者及理论研究者对精准扶贫的关注与日俱增。精准扶贫是通过精准识别、精准帮扶、精准管理和精准考核,以优化配置各类扶贫资源的扶贫模式。2014年以来,国家相继发布《建立精准扶贫工作机制实施方案》《关于打赢脱贫攻坚战的决定》和《“十三五”脱贫攻坚规划》等文件,标志着精准扶贫正式上升为国家战略。精准扶贫也由此成为扶贫工作的新模式,成为我国全面建成小康社会的战略路径。当前,扶贫工作进入攻城拔寨的关键时期,实践中依然存在一些问题,亟须破解。
扶贫数据缺乏前瞻性
一是扶贫对象可能被“漏统”或“错置”。由于贫困对象的贫困表现及其致贫原因具有多维性和个性化等特点,且现有的低收入农户、低保和助学等数据库未能实现互联和整合,因此,扶贫管理人员难以确认采集数据的真实性,可能导致一些扶贫对象被“漏统”或“错置”。
二是帮扶政策措施的供需匹配不足。脱贫难和返贫快等难题不能简单归结为政策供给不足。扶贫政策设计与实施时,未能通过多源数据充分解析多维状态的贫困表现及致贫原因,使得不少地区的帮扶政策供给难以真正匹配扶贫对象的真实需求,导致帮扶政策不到位、扶贫资源浪费及帮扶效果不佳等问题。
三是扶贫管理的动态预警机制不健全。扶贫管理的核心在于,使帮扶对象有进有退以及帮扶政策及时跟进。但一些地区的扶贫管理部门未能对扶贫数据进行前瞻性跟踪与动态预警,由此造成了已脱贫对象未能及时退出帮扶名单而继续享受扶贫政策等问题。
定制造血式帮扶政策措施
大数据技术具有从大规模数据中高速收集、分析、建模与解读以发现管理决策价值的技术优势。精准扶贫可以此为技术支撑,以扶贫问题为导向,破解扶贫工作实践中的难题。
第一,通过多源大数据的分析比对,及时而精准地识别出“真贫”。精准识别是精准扶贫的前提,可利用大数据技术,将收集的扶贫对象数据进行萃取、整合、建档立卡并录入扶贫信息系统。在此基础上,将民政、财政、地税、残联、社保、工商和房产等部门数据,与外部多源大数据进行分析、比对、建模,从而及时精准地识别出真正的扶贫对象。
第二,通过大数据支持帮扶供需匹配,实施造血式精准施策。精准帮扶是通过解析多维状态的贫困表现及致贫原因,实施与帮扶需求相匹配的针对性政策措施。大数据技术有助于决策者从扶贫大数据中,挖掘出隐含致贫原因和“真贫”需求。以此为基础,构建扶贫政策的供求匹配模型,为贫困对象定制造血式帮扶政策措施,“因人因地施策,因贫困原因施策,因贫困类型施策”。
第三,通过追踪大数据的变化趋势,实现对扶贫工作的动态预警与精准管理。精准管理是通过跟踪扶贫政策执行、项目实施与资金使用等方面的动态数据,以保障扶贫政策精准到位和扶贫资金有效使用的一种扶贫管理模式。大数据技术有助于提高数据加工能力和效率,管理部门可以动态实时地跟踪扶贫大数据,据此进行追踪预警与决策优化,从而保障扶贫政策措施的效率与效益。
第四,通过整合分析多源与多主体的大数据,提升对扶贫工作的精准考核水平。精准考核是对扶贫工作进行全过程量化考核的一种扶贫考核模式。可以在扶贫信息管理系统中嵌入一套扶贫考核指标体系和数字化考核系统,并利用大数据技术对相关数据进行萃取整理与分析建模。在此基础上,管理部门对扶贫工作实施全过程数字化考核,对考核结果数据实施动态监控,从而保障各项帮扶政策实施及其扶贫管理责任的精准到位。
搭建适应移动终端的数据平台
现有的扶贫信息管理系统虽已具备数据收集整合、存储查询和分析比对等部分功能,但仍处于大数据技术运用的初级阶段。为更充分利用并发挥大数据技术的功能优势,建议优化大数据精准扶贫模式,实现以精准识别、精准帮扶、精准管理和精准考核为内容的精准扶贫模式。
首先,构建精准扶贫大数据技术平台。建议加快推进精准扶贫大数据平台建设与完善,开发出适应移动终端的精准扶贫大数据平台。借此对收集到的多源扶贫大数据进行萃取、整合、分析、建模与解读,从而精准地识别出“真贫”。同时,瞄准“真贫”需求精准施策,对扶贫政策效果进行全过程的数字化考核与动态预警。
其次,建立瞄准“真贫”需求的动态预警机制。面向“真贫”对象的帮扶诉求,借助大数据技术跟踪贫困对象相关数据,前瞻性地预警贫困趋势、脱贫潜力和返贫问题,动态而及时地精准瞄准“真贫”、精准施策及评估扶贫工作成效,保障“真贫”对象能及时脱贫,确保小康路上一个都不掉队。
最后,协调推进大数据技术创新与扶贫机制创新。大数据技术功能的实现有赖于最佳的精准扶贫机制创新实践,只有技术创新与机制创新联动协调,才能创造出新的“政策红利”和“技术红利”,才能使扶贫对象分享到技术创新与机制创新的净利益增量。扶贫管理部门应协调推进大数据技术创新与精准扶贫机制创新,从而使线下的最佳扶贫工作实践与线上的大数据平台功能优势相得益彰,使大数据技术真正有效地助力精准扶贫模式创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12