
关于Python中空格字符串处理的技巧总结
大家应该都知道字符串处理,是任何语言最常用到的。 其中就经常会碰到,对字符串中的空格处理,比如:去除前后空格,去除全部空格,或者以空格为分隔符来处理。 好在Python中字符串有很多方法,比如lstrip() , rstrip() , strip()来去除字符串前后空格,借助split()对字符来分隔; 实在不行,还可以借助于re模块的sub函数来替换。
下面列举下,各种情况下的处理技巧,通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,话不多说了,来一起看看详细的介绍吧。
【技巧一】借助于lstrip()来去除左边空格
>>> s = ' A B C '
>>> s.lstrip() # 去除字母字符串左边的空格
'A B C '
【技巧二】借助于rstrip()来去除右边空格
>>> s = " A B C "
>>> s.rstrip() # 去除字符串右边的空格
' A B C'
【技巧三】借助于strip()来去除左右两边的空格
>>> s = " A B C "
>>> s.strip() # 去除两边的空格
'A B C'
备注:
无论是lstrip() , rstrip() ,还是strip()默认去除空格,其实如果有其他字符也是可以去除的。比如下面示例:
从上面的例子可以看到,这三个函数的功能还是非常强大的!
【技巧四】借助于re.sub()来去除字符串中的所有空格
>>> import re
>>> s = " A B C "
>>> re.sub('\s', '', s)
'ABC'
【技巧五】借助于借助于s.split('')来以空格分隔字符串
>>> names = 'Jerry Alice Tom'
>>> names.split(' ')
['Jerry', 'Alice', 'Tom']
【技巧六】借助re.split()来多种分割字符串
上面的s.split('') ,如果碰到中间有多个空格,就会出现下面这种情况,而这很可能并非我们想要的。
>>> char = 'A B C'
>>> char.split(' ')
['A', 'B', '', 'C']
况且,实际情况可能很复杂,比如里面即有空格,又有逗号,或者:; 如果要多种分割就必须借助re.split()函数,比如下面这个变量,要将其中的年,月,日,时,分,秒都一次性取出来,放置到一个列表中:
time = '2017/03/01 08:15:30'
备注:
1.[/\s:] # 将要分隔的分隔符放置于[]
2.[/\s:]+ # 允许1个或多个分隔符号存在
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22