
互联网时代教育新需求:开展大数据应用
教育质量提高的本质是要更加丰富地满足人们多层次、个性化和持续变化的教育需求。这些教育需求并不是抽象的,也不是一些不可捉摸的概念,而是日益清晰地表现为可以数据化的教育偏好、教育选择、教育行为及其调查结果。在互联网时代,正在大量涌现的与学校教育质量相关的素材,经过处理后加总起来就表现为有关教育质量的数据,这些数据的海量化加之以恰当的处理方式,使之具有更强的洞察发现力、流程优化力和决策力,就成为了我们提高教育质量可资利用的大数据。因而,要实现教育质量提高,从根本上就是要获取尽可能多的反映人们教育需求的大数据。拥有的实时或长时的大数据越多,就越能够在学校教育质量效能上快速地、准确地和多样化地满足受教育者需求。
教育过程的复杂性、教育质量的滞后性等特征的存在,使教育质量提高的主体责任划分不明确。大数据技术可以对学校教育过程的各个环节及时收集分析数据,进行记录和监测。如2012年10月美国教育部在其发布的《通过教育数据挖掘和学习分析促进教与学》报告中提出,“目前教育领域中大数据的应用主要有教育数据挖掘和学习分析两大方向”。也就是说,依据大数据技术能在学生的学习与需求、教学决策与教育管理等方面发挥预测作用,教师、校长等在其间的作为既有了依据也有了责任,使教育质量提高有了大数据基础。
在互联网时代,数据成为了我们学校教育的核心资源,当学生及其家长、师资队伍、课程与教学、学校领导和教育管理这些传统要素,需要依托数据资源进行优化配置时,大数据技术将成为决定教育质量提高的关键性因素。教育质量提高离不开课程与教学的改进,只有它们的不断升级和内容更新才能带来教育质量的突破。随着智能化和个性化的增长,教育质量提高也离不开学校领导者水平的提高以及教育管理的创新,因为它不仅带来方向的正确和效率的提高,也能促成教育质量所需要的各项标准规范。但是,课程与教学的改进、学校领导者水平的提高和管理创新,并不能自动带来教育质量提高对人们教育需求的满足,只有当这些资源配置真正能促进学生发展,并且能够促进学生及其家长满意度提高的时候,才能支撑教育质量的提高。而这些资源配置与使用能否真正转化为需求满足,就取决于大数据的应用。
事关教育质量提高的要素涉及多方主体,包括学生及其家长、教师、学校、主管部门和社区。
大数据的出现,让各方通过互联网能够更加准确地掌握学校教育质量状态,特别是了解教育质量评价信息,从而极大地减少因为信息误导而导致的质量损失。同时,我们还不得不说,作为教育质量的供给方,学校或其主管部门对教育质量的控制与监测,实际上是教育服务生产者在主观上的自我评价。只有将学校教育服务转化为受教育者及其家长真实的选择,才是在客观上对教育质量的真实评价。因而,教育质量提高关注的焦点,就是受教育者及其家长是否产生了教育选择行为。特别重要的是,教育质量提高不仅关注受教育者通过教育选择行为而表现出来的质量评价,而且更为关注的是受教育者在之后的满意度评价。因此,在制度性地限制人们教育选择行为时,依托大数据技术,尽可能地实现学校教育质量信息共享与公开,并保证数据准确及时,才能够支撑教育质量提高的可持续性。
认识到大数据技术对教育质量提高的重要性,认识到质量大数据是实现教育质量提高的重要资源,应该说还只是第一步。数据采集、数据共享、数据挖掘、数据利用、数据安全等问题,有些已经在我们教育质量提高行动中取得了成就,有些还有待加强与完善,有些可能还刚刚起步。在数据采集方面,我们面临教育质量数据资源积累不足与大数据碎片化、割据化共存现象,这需要鼓励各学校、主管部门和社会第三方对质量数据资源的广泛采集和处理整合,明确不同种类数据的收集对象、收集方法等。在数据共享方面,应制定教育质量大数据的技术、产权、使用等标准和规范,最大程度地开放各类不同机构所拥有的教育质量数据,共同构建基于信用、安全为基础的“教育质量大数据”,突破“信息孤岛”藩篱。在数据挖掘使用方面,学校通过教育质量大数据识别受教育者多样化的教育需求,受教育者及其家长利用学校教育质量大数据识别学校真实质量状况,政府利用教育质量大数据实施更有效的教育质量政策。在数据安全方面,由于教育质量大数据包含有大量的个人隐私,甚至涉及国家安全的信息,因此需要厘清隐私数据和开放数据的界限,用法规制度的形式对教育质量大数据进行规范管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15