京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python 处理数据的实例详解
最近用python(3.2的版本)写了根据特定规则,处理数据的一个小程序,用到了一些python常用的基础知识,在此总结一下:
1,python读文件
2,python写文件
3,python的流程控制
4,python的for循环
5,python的集合,或字符串里判断是否存在某个元素
6,python的逻辑或,逻辑与
7,python的正则过滤
8,python的字符串忽略空格,和以某个字符串开头和按某个字符拆分成list
python的打开文件的模式:
关于open 模式:
w 以写方式打开,
a 以追加模式打开 (从 EOF 开始, 必要时创建新文件)
r+ 以读写模式打开
w+ 以读写模式打开 (参见 w )
a+ 以读写模式打开 (参见 a )
rb 以二进制读模式打开
wb 以二进制写模式打开 (参见 w )
ab 以二进制追加模式打开 (参见 a )
rb+ 以二进制读写模式打开 (参见 r+ )
wb+ 以二进制读写模式打开 (参见 w+ )
ab+ 以二进制读写模式打开 (参见 a+ )
处理代码如下:
def showtxt(path,outpathname,detailpath):
greenpath=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\green.txt";
redpath=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\red.txt";
redset=listtxt(redpath)
greenset=listtxt(greenpath)
print("红色词数量: ",len(redset))
print("绿色词数量: ",len(greenset))
#符合1条件的内容写入
f1=open(r"C:\Users\qindongliang\Desktop\tnstxt\result\\"+detailpath+"\\1.txt",encoding="UTF-8",mode="a+")
#符合2条件的内容写入
f2=open(r"C:\Users\qindongliang\Desktop\tnstxt\result\\"+detailpath+"\\2.txt",encoding="UTF-8",mode="a+")
#符合3条件的内容写入
f3=open(r"C:\Users\qindongliang\Desktop\tnstxt\result\\"+detailpath+"\\3.txt",encoding="UTF-8",mode="a+")
#符合4条件的内容写入
f4=open(r"C:\Users\qindongliang\Desktop\tnstxt\result\\"+detailpath+"\\4.txt",encoding="UTF-8",mode="a+")
delcount=1;
f=open(path,encoding="UTF-8",mode="r+")
fnew=open(outpathname,encoding="UTF-8",mode="a+")
flog=open(outpathname+".log",encoding="UTF-8",mode="a+")
#count=1;
for line in f:
list=line.strip().split("\t")
line=line.strip()
catalogid=list[0]
score=list[1]
keyword=clear(list[4].strip())
if keyword in redset:
if catalogid.startswith("018022") or catalogid.startswith("018035") or catalogid.startswith("014023003") :
f1.write(line+"\n")#符合1条件写入
fnew.write(line+"\n")#符合1条件写入
else:
flog.write(line+" 不符合条件1 "+"\n")
delcount=delcount+1
if keyword in greenset:
if not (catalogid.startswith("018022") or catalogid.startswith("018035") or catalogid.startswith("014023003")) :
fnew.write(line+"\n")
else:
f2.write(line+"\n")
flog.write(line+" 不符合条件2"+"\n")
delcount=delcount+1
flist=formatStrList(keyword)
if "sexy" in flist or "sex" in flist:
if catalogid.startswith("018022") or catalogid.startswith("018035") or catalogid.startswith("014023003") :
f3.write(line+"\n")
fnew.write(line+"\n")
else:
flog.write(line+" 不符合条件3"+"\n")
delcount=delcount+1
#if (keyword.find("underwear")!=-1) & keyword.find("sexy")==-1 & keyword.find("sex")==-1:
if "underwear" in flist and "sexy" not in flist and "sex" not in flist:
if catalogid.startswith("014032") :
f4.write(line+"\n")
fnew.write(line+"\n")
else:
flog.write(line+" 不符合条件4"+"\n")
delcount=delcount+1
#print(list[0]," ",list[1]," ",list[4])
#print()
flog.write("删除总数目: "+str(delcount))
f.close()
f1.close()
f2.close()
f3.close()
f4.close()
fnew.close()
flog.close()
import re
def clear(str):
str=re.sub("[\"\"\'\'+]","",str)
return str
def formatStrList(keyword):
list=keyword.split(" ")
for item in list:
item.strip();
return list
def listtxt(path):
f=open(path,encoding="UTF-8")
s=set()
for line in f:
s.add(line.strip())
f.close()
return s
path1=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\highfrequency.txt"
pathout1=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\detail\\a_highfrequency.txt"
detail1path="highfrequency"
path2=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\highfrequency_d1.txt"
pathout2=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\detail\\b_highfrequency_d1.txt"
detail2path="highfrequency_d1"
#showtxt(path1,pathout1,detail1path)
showtxt(path2,pathout2,detail2path)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21