
大数据如何驱动社会治理
“大数据”迅速成为一个“热门”概念,在社会治理领域,运用大数据提升社会治理的智能化水平也已经成为大势所趋。然而,仅仅停留于“大数据”的概念并不能解决中国社会治理的诸多难题,大数据驱动是技术、产业、战略和思维四大要素的系统驱动,任何一个要素的缺失都可能影响到大数据驱动社会治理的实效。与此同时,大数据驱动在本质上是信息驱动,信息技术手段的使用虽然可以解决中国社会治理的很多问题,但并非全部问题,因此需要澄清大数据驱动社会治理的社会机制和问题领域。此外,大数据驱动社会治理作为一项社会创新,除技术条件外,不可避免地还要受到文化、制度、结构等社会因素的制约,只有正视并消除这些因素的制约,才能使大数据驱动的社会治理真正“落地生根”。
大数据的本质是信息。大数据驱动的核心在于信息驱动。因此,大数据可以通过信息驱动解决中国社会治理的一些难点问题。那么,中国社会治理的哪些难点问题可以通过大数据思维得到解决或缓解?这就需要回到中国社会治理的情境。中国社会治理的核心是政府与社会关系,凡是涉及政府与社会关系的领域,都可以划归社会治理。由于中国转型期政府与社会关系的张力,社会治理的主要任务就是化解这种张力,解决社会问题、化解社会矛盾、促进社会公正、应对社会风险、保持社会稳定都是此列。
总体来看,中国的社会治理面临三大难题:一是“数据孤岛”问题。“数据孤岛”问题根源于政府体系的科层结构,这是人类社会自进入工业社会以来就开始面临的问题。在社会治理领域,“数据孤岛”造成信息分割,不仅影响政府管理社会的效率,也降低了政府服务社会的质量。二是“原子化个体”问题。一方面,中国庞大人口规模使得“原子化个体”在总量上也很庞大,不管是政府管理社会,还是政府服务社会,如何满足规模庞大的“原子化个体”千差万别的需求都是巨大的挑战。另一方面,中国的社会组织长期处于低度发展的状态,“原子化个体”的组织化一直进展不大。三是社会自治参与不足的问题。在社区层面,社区自治一直面临着参与不足的问题。这三个因素往往相互影响,互相强化。
上述三个问题并非中国社会治理的全部问题,但却是核心问题。这些问题无法通过“一事一议”的方式予以解决,而必须对社会治理进行系统升级。大数据提供了一个契机,通过大数据驱动的整体性治理、精准化治理和参与式治理可以成为中国社会治理系统升级的努力方向。其中,整体性治理主要强调治理的主体的多元化,大数据可以通过主体之间的数据共享来解决“数据孤岛”的问题,进而促进治理主体的多元化。首先,政府部门之间的数据共享可以通过规范政府数据采集的标准、建设统一的政府大数据中心等方法予以解决。其次,政府、市场、社会三者之间的数据共享可以通过政府开放数据、建立数据交易机制等方法予以解决。精准化治理主要强调利益的多样性,大数据可以通过数据匹配的方式进行人群识别、需求识别和方式识别,使“人民”的政治修辞具体化为不同的利益群体、独特个体,从而实现对数量庞大的“原子化个体”的差异化服务。参与式治理主要强调主体之间的互动性,大数据可以通过数据互动的方式降低社区自治的参与成本,提升社区居民参与社区自治的效能感,培育社区居民的公益精神,促进政府与社会之间的协同。在大数据时代,社区居民通过互联网进行互动的过程本身也是大数据的生成过程。整体化治理、精准化治理、参与式治理既相互交叉,又相互促进,难以做出截然的划分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01