京公网安备 11010802034615号
经营许可证编号:京B2-20210330
未来五年将进入数据科学家时代
美国学者格斯特林表示,5年内所有软件应用都将内置智能,使数据科学家成为“认知”技术经济的关键工作者。
对于一个理应奇缺人才的领域,数据科学似乎在快速造就大批新专家。不久前,1600人出席了华盛顿大学(University of Washington)机器学习教授卡洛斯•格斯特林(Carlos Guestrin)执掌的公司Turi在旧金山主办的一次数据科学峰会,表明数据科学引起的兴趣是多么的浓厚。
格斯特林提出,所有软件应用在5年内都将需要内置的智能,使数据科学家——经过培训,能够对海量数据进行分析的人员——成为这一新兴“认知”技术经济中的关键工作者。
无论这种关于数据科学即将无处不在的预测正确与否,目前已有一些核心的关键应用依赖机器学习,最主要的是推荐程序、欺诈探测系统、预报工具和旨在预测顾客行为的应用。
把直到不久以前还专属于研究科学家的技术纳入生产级的业务应用程序,可能指向企业竞争力的一种深刻变化。在Turi活动上炫耀数据科学和机器学习技能的公司——包括优步(Uber)、Pinterest和Quora——都创立于数字时代。
举办在线数据科学竞赛的Kaggle的首席执行官安东尼•戈德布卢姆(Anthony Goldbloom)表示,一些在模拟世界里成长壮大的公司,比如沃尔玛(Walmart),也在大举投资于数据科学领域。但他预测称,它们不太可能赶上亚马逊(Amazon)之类公司,这类公司拥有先发优势,并且动作很快。随着相关技术在不同行业推广,随着智能系统发挥越来越关键的作用,这些趋势可能导致行业领导地位发生天翻地覆的变化。
拖累许多传统公司的一个因素,将是开展真正的机器学习运作的高成本。
一名知情人士表示,Netflix估计在一个单一应用——其电影推荐系统——上每年支出1.5亿美元,而一旦把该公司对相关技术的所有应用都考虑在内,总账单很可能是这一金额的四倍。
许多创立时具有数字基因的公司——尤其是那些拥有海量实时客户交互数据可以挖掘的互联网公司——对数据科学的投入是不遗余力的。例如,Pinterest的首席科学家尤雷•莱斯科韦茨(Jure Leskovec)表示,该公司维护着逾100种可以应用到不同类型问题中去的机器学习模型,不断处理热切希望利用这些资源解决业务问题的经理们的请求。
人才是许多非科技公司的另一个问题。尽管数据科学家正大量涌现出来,但有些技能十分短缺,尤其是在深度学习方面——这是最高形式的机器学习。戈德布卢姆说,在使用Kaggle的自由职业计算机科学专家中,仅有大约1000人拥有深度学习技能,而可以运用其他机器学习方法的有10万人。
他接着说,大公司经常不愿调整自己的工资等级去聘用该领域的顶级人才,即便某个高薪专家开发的算法可能对公司业务起到超出比例的效果。
然而,适应即将到来的“智能”应用时代的最大障碍,可能是文化上的。有些公司,比如通用电气(GE),一直在硅谷打造自己的研发团队,以吸引和开发他们将需要的数字技能。但是,他们将不得不把新的数据科学家和机器学习专家安排到运营部门中去,让他们更接近部门经理,才能收获全部好处。
科学与业务实践之间的这种结合是至关重要的。不言而喻的是,从现在开始,所有的经理都将需要在数据引导下做出决策。但那需要思维模式的彻底改变,说来容易做来难。
戈德布卢姆说,这一挑战已变得更为艰巨,因为经理们被要求围绕新的“智能应用”重新设计自己的工作流程,在一定程度上使他们自己失去存在的必要性。
尽管存在种种障碍,有些公司或许能处理好这一艰难的转型。但是,那些在创立之时就把数据科学和机器学习作为业务核心的公司,很可能构成强大竞争。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29