
未来五年将进入数据科学家时代
美国学者格斯特林表示,5年内所有软件应用都将内置智能,使数据科学家成为“认知”技术经济的关键工作者。
对于一个理应奇缺人才的领域,数据科学似乎在快速造就大批新专家。不久前,1600人出席了华盛顿大学(University of Washington)机器学习教授卡洛斯•格斯特林(Carlos Guestrin)执掌的公司Turi在旧金山主办的一次数据科学峰会,表明数据科学引起的兴趣是多么的浓厚。
格斯特林提出,所有软件应用在5年内都将需要内置的智能,使数据科学家——经过培训,能够对海量数据进行分析的人员——成为这一新兴“认知”技术经济中的关键工作者。
无论这种关于数据科学即将无处不在的预测正确与否,目前已有一些核心的关键应用依赖机器学习,最主要的是推荐程序、欺诈探测系统、预报工具和旨在预测顾客行为的应用。
把直到不久以前还专属于研究科学家的技术纳入生产级的业务应用程序,可能指向企业竞争力的一种深刻变化。在Turi活动上炫耀数据科学和机器学习技能的公司——包括优步(Uber)、Pinterest和Quora——都创立于数字时代。
举办在线数据科学竞赛的Kaggle的首席执行官安东尼•戈德布卢姆(Anthony Goldbloom)表示,一些在模拟世界里成长壮大的公司,比如沃尔玛(Walmart),也在大举投资于数据科学领域。但他预测称,它们不太可能赶上亚马逊(Amazon)之类公司,这类公司拥有先发优势,并且动作很快。随着相关技术在不同行业推广,随着智能系统发挥越来越关键的作用,这些趋势可能导致行业领导地位发生天翻地覆的变化。
拖累许多传统公司的一个因素,将是开展真正的机器学习运作的高成本。
一名知情人士表示,Netflix估计在一个单一应用——其电影推荐系统——上每年支出1.5亿美元,而一旦把该公司对相关技术的所有应用都考虑在内,总账单很可能是这一金额的四倍。
许多创立时具有数字基因的公司——尤其是那些拥有海量实时客户交互数据可以挖掘的互联网公司——对数据科学的投入是不遗余力的。例如,Pinterest的首席科学家尤雷•莱斯科韦茨(Jure Leskovec)表示,该公司维护着逾100种可以应用到不同类型问题中去的机器学习模型,不断处理热切希望利用这些资源解决业务问题的经理们的请求。
人才是许多非科技公司的另一个问题。尽管数据科学家正大量涌现出来,但有些技能十分短缺,尤其是在深度学习方面——这是最高形式的机器学习。戈德布卢姆说,在使用Kaggle的自由职业计算机科学专家中,仅有大约1000人拥有深度学习技能,而可以运用其他机器学习方法的有10万人。
他接着说,大公司经常不愿调整自己的工资等级去聘用该领域的顶级人才,即便某个高薪专家开发的算法可能对公司业务起到超出比例的效果。
然而,适应即将到来的“智能”应用时代的最大障碍,可能是文化上的。有些公司,比如通用电气(GE),一直在硅谷打造自己的研发团队,以吸引和开发他们将需要的数字技能。但是,他们将不得不把新的数据科学家和机器学习专家安排到运营部门中去,让他们更接近部门经理,才能收获全部好处。
科学与业务实践之间的这种结合是至关重要的。不言而喻的是,从现在开始,所有的经理都将需要在数据引导下做出决策。但那需要思维模式的彻底改变,说来容易做来难。
戈德布卢姆说,这一挑战已变得更为艰巨,因为经理们被要求围绕新的“智能应用”重新设计自己的工作流程,在一定程度上使他们自己失去存在的必要性。
尽管存在种种障碍,有些公司或许能处理好这一艰难的转型。但是,那些在创立之时就把数据科学和机器学习作为业务核心的公司,很可能构成强大竞争。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28