京公网安备 11010802034615号
经营许可证编号:京B2-20210330
学习和使用SAS的一点感想
想说一说自己在学习和使用SAS时的所得所失。我可能走了许多弯路,尤其是比起那些具备更多的信息的,更加年轻的人。我的经验或许比你的要多,也可能更加微不足道。但是分享的本身,即使是微末的一点点,也是乐趣。不是吗?
一直到现在,我还觉得自己做SAS还是挺辛苦的,差不多从来就没有很多人那样的举重就轻。如果我说自己学了三年的SAS还不成的话,有人会纳闷。纳闷SAS不就是几个月的速成软件吗?对一些人来说,这无疑是正确的。可是如果承认自己的智商并非天赋异秉而高人一等的话,就得潜下心来,不要妄自菲薄。我自己学了五年SAS,还经常犯错。我的同事做的更好,可是也犯错误。
我所学专业是统计,入门的软件是R,在工作里差不多只和SAS打交道。用SAS处理数据分析数据。不多的时候用R运行一下别人的程序,或者是SAS里没有成形的较新的方法。一年也设计一二或三个DATABASE(用ACCESS)。我的工作内容差不多可以普遍到整个做统计分析行业:大致如此。最重要的当然是数据分析,或者说分析数据就是自己的日常工作内容。几乎无时不刻的用SAS。
因为入门晚,大概有五年的时间,开始用的差不多就是SAS V9的版本。所以每当看到有些SAS使用者在用proc plot一类的过程,看到那些星星点点的黑白的制图,除了肃然起敬之外,也明白了为什么很多人会讨厌SAS的图形功能。从现在SAS的图形功能及其和ODS输出的良好结合性来看,sas的制图是很美观的。而这种对SAS旧版本的较为薄弱的制图形功能的轻视,几乎成了许多人的共识:不要用sas画图。我很幸运,过度了大概两年时间的gplot,到了现在的sg-plot。我的工作任务之一是给“科学研究”(我总这在想这种提法科学吗?)提供数据分析报告,从发表杂志文章的角度来看,sas图例无论是从清晰度还是审美的角度来看,都是杂志图例的首选之一。不象有的人抱怨excel成图的DPI太低。其实有时候R也存在这个问题。
SAS涵盖比较广泛。其特定的功用可以延伸到许多不同的行业。而量身定制的衍生产品也有泛滥的趋势。不过,SAS/STAT应该仍然是它的核心。相比其实不太有历史感的9.0版本,SAS在STAT上的拓展也可以说是日新月异。比如说在MCMC上,在非参数估计上,在随机线性模型的补充改善上都是这几年的事情。且不提更新的分位回归,结构方程分析(PROC CALIS),以及混合模型等等。原来觉得很难做的东西,现在都成为了常规。几年以前的统计博士或许不懂生存分析。现在差不多本科生都知道怎么绘制生存曲线。如同统计在运算方面的突飞猛进,SAS也与时俱进。所以引以为自豪的太老的SAS经验,如果没有变成进步的阻碍的话,也成了自吹自擂的慰籍。
我在学了两年的SAS之后,觉得SAS其实也没有什么。其实都是自菲薄。SAS作为一个软件,承载的是更加厚重的统计学的发展。我曾经和同事谈论过PROC GLM。我认为GLM基本上取代了REG过程。可是现在,我不得不把许多线性分析的问题从GLM挪到REG里去做,因为REG在许多方面更加有效和全面。比如说模型选择和诊断。类似的如同GENMOD和LOGISTIC的关系。GENMOD也许可以做的更多,但是无疑LOGISTIC在logit模型上做的更深更精确。
和许多的软件一样,SAS是个大杂烩,可以提供许多菜单以供顾客选择。考虑到这一点,杂这个概念非常重要。杂用,其实是取其精华,不囿于某个步骤和过程。我看到一些人试图用数据步或者SQL去解决统计的问题。南辕北辙。事倍功半。因为SAS已经提供更加缜密的统计过程来计算统计量解决统计问题。如果我说你在SQL费力半天求的中位数其实是错误,可能你生气。可是是事实。还有一个例子是关于使用PROC NLMIXED的问题。这是一个用最大似然法解决非线性模型的统计过程。其实,且不提MAXIMUM LIKELIHOOD在许多问题上并非是最有效的最优化的,盲目的写了很长的公式,而人为忽略其他的过程或许已经提供更优化的解法,并非是表现好的数学功底的唯一方法。
作为一个做数据分析的,我切实的建议是,不要忽略数据步的作用。做sas开始的很长一段时间里,你或许都无法避免程序疏漏的困扰。这些错误很大的一部分来自对DATA STEP没有深刻的理解。我有时候惊讶自己为什么总犯些很低级的错误。其实这些错误是有根源的。好的数据分析的基础是真确的数据。如果失去了这个基础,其它的似乎变得没有意义。包括我自己,时常的尴尬是为什么同样的数据,分析结果却无法复制。原因差不多总是源于对SAS理解的不深不全。
我不希望自己把SAS理解为专于程序编制的软件。其实其最终的目的应该是进行统计分析,产生分析总结的报告。所以编程只是手段而已。data step再难,多做几遍,多记忆就会掌握,但是繁复变化的统计理论和运算,需要不断的理解和改进。所以一个统计分析报告或许也几易其稿,不断改善。
和我一样,你或许也感受到SAS的易和不易。不过,通过学习和使用SAS而获得对知识的兴趣,可能使得我们对自己的看似无聊的工作减少了许多抱怨。CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15