
学习和使用SAS的一点感想
想说一说自己在学习和使用SAS时的所得所失。我可能走了许多弯路,尤其是比起那些具备更多的信息的,更加年轻的人。我的经验或许比你的要多,也可能更加微不足道。但是分享的本身,即使是微末的一点点,也是乐趣。不是吗?
一直到现在,我还觉得自己做SAS还是挺辛苦的,差不多从来就没有很多人那样的举重就轻。如果我说自己学了三年的SAS还不成的话,有人会纳闷。纳闷SAS不就是几个月的速成软件吗?对一些人来说,这无疑是正确的。可是如果承认自己的智商并非天赋异秉而高人一等的话,就得潜下心来,不要妄自菲薄。我自己学了五年SAS,还经常犯错。我的同事做的更好,可是也犯错误。
我所学专业是统计,入门的软件是R,在工作里差不多只和SAS打交道。用SAS处理数据分析数据。不多的时候用R运行一下别人的程序,或者是SAS里没有成形的较新的方法。一年也设计一二或三个DATABASE(用ACCESS)。我的工作内容差不多可以普遍到整个做统计分析行业:大致如此。最重要的当然是数据分析,或者说分析数据就是自己的日常工作内容。几乎无时不刻的用SAS。
因为入门晚,大概有五年的时间,开始用的差不多就是SAS V9的版本。所以每当看到有些SAS使用者在用proc plot一类的过程,看到那些星星点点的黑白的制图,除了肃然起敬之外,也明白了为什么很多人会讨厌SAS的图形功能。从现在SAS的图形功能及其和ODS输出的良好结合性来看,sas的制图是很美观的。而这种对SAS旧版本的较为薄弱的制图形功能的轻视,几乎成了许多人的共识:不要用sas画图。我很幸运,过度了大概两年时间的gplot,到了现在的sg-plot。我的工作任务之一是给“科学研究”(我总这在想这种提法科学吗?)提供数据分析报告,从发表杂志文章的角度来看,sas图例无论是从清晰度还是审美的角度来看,都是杂志图例的首选之一。不象有的人抱怨excel成图的DPI太低。其实有时候R也存在这个问题。
SAS涵盖比较广泛。其特定的功用可以延伸到许多不同的行业。而量身定制的衍生产品也有泛滥的趋势。不过,SAS/STAT应该仍然是它的核心。相比其实不太有历史感的9.0版本,SAS在STAT上的拓展也可以说是日新月异。比如说在MCMC上,在非参数估计上,在随机线性模型的补充改善上都是这几年的事情。且不提更新的分位回归,结构方程分析(PROC CALIS),以及混合模型等等。原来觉得很难做的东西,现在都成为了常规。几年以前的统计博士或许不懂生存分析。现在差不多本科生都知道怎么绘制生存曲线。如同统计在运算方面的突飞猛进,SAS也与时俱进。所以引以为自豪的太老的SAS经验,如果没有变成进步的阻碍的话,也成了自吹自擂的慰籍。
我在学了两年的SAS之后,觉得SAS其实也没有什么。其实都是自菲薄。SAS作为一个软件,承载的是更加厚重的统计学的发展。我曾经和同事谈论过PROC GLM。我认为GLM基本上取代了REG过程。可是现在,我不得不把许多线性分析的问题从GLM挪到REG里去做,因为REG在许多方面更加有效和全面。比如说模型选择和诊断。类似的如同GENMOD和LOGISTIC的关系。GENMOD也许可以做的更多,但是无疑LOGISTIC在logit模型上做的更深更精确。
和许多的软件一样,SAS是个大杂烩,可以提供许多菜单以供顾客选择。考虑到这一点,杂这个概念非常重要。杂用,其实是取其精华,不囿于某个步骤和过程。我看到一些人试图用数据步或者SQL去解决统计的问题。南辕北辙。事倍功半。因为SAS已经提供更加缜密的统计过程来计算统计量解决统计问题。如果我说你在SQL费力半天求的中位数其实是错误,可能你生气。可是是事实。还有一个例子是关于使用PROC NLMIXED的问题。这是一个用最大似然法解决非线性模型的统计过程。其实,且不提MAXIMUM LIKELIHOOD在许多问题上并非是最有效的最优化的,盲目的写了很长的公式,而人为忽略其他的过程或许已经提供更优化的解法,并非是表现好的数学功底的唯一方法。
作为一个做数据分析的,我切实的建议是,不要忽略数据步的作用。做sas开始的很长一段时间里,你或许都无法避免程序疏漏的困扰。这些错误很大的一部分来自对DATA STEP没有深刻的理解。我有时候惊讶自己为什么总犯些很低级的错误。其实这些错误是有根源的。好的数据分析的基础是真确的数据。如果失去了这个基础,其它的似乎变得没有意义。包括我自己,时常的尴尬是为什么同样的数据,分析结果却无法复制。原因差不多总是源于对SAS理解的不深不全。
我不希望自己把SAS理解为专于程序编制的软件。其实其最终的目的应该是进行统计分析,产生分析总结的报告。所以编程只是手段而已。data step再难,多做几遍,多记忆就会掌握,但是繁复变化的统计理论和运算,需要不断的理解和改进。所以一个统计分析报告或许也几易其稿,不断改善。
和我一样,你或许也感受到SAS的易和不易。不过,通过学习和使用SAS而获得对知识的兴趣,可能使得我们对自己的看似无聊的工作减少了许多抱怨。CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07