
Python中对元组和列表按条件进行排序的方法示例
在python中对一个元组排序
我的同事Axel Hecht 给我展示了一些我所不知道的关于python排序的东西。 在python里你可以对一个元组进行排序。例子是最好的说明:
>>> items = [(1, 'B'), (1, 'A'), (2, 'A'), (0, 'B'), (0, 'a')]
>>> sorted(items)
[(0, 'B'), (0, 'a'), (1, 'A'), (1, 'B'), (2, 'A')]
默认情况下内置的sort和sorted函数接收的参数是元组时,他将会先按元组的第一个元素进行排序再按第二个元素进行排序。 然而,注意到结果中(0, 'B')在(0, 'a')的前面。这是因为大写字母B的ASCII编码比a小。然而,假设你想要一些更人性的排序并且不关注大小写。你或许会这么做:
>>> sorted(items, key=str.lower)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor 'lower' requires a 'str' object but received a 'tuple'
我们将会得到一个错误,因为他不能正确处理元组的第一部分。(注:原文作者估计想说元组中第一项是数字,不能使用lower这个方法;正确的原因提示的很明显了,是因为你传递的是一个元组,而元组是没有lower这个方法的)
我们可以试着写一个lambda函数(eg.sorted(items, key=lambda x: x.lower() if isinstance(x, str) else x)),他将不会工作因为你只处理了元组的一个元素。(注:同上面,作者这么做必然是错的,思考给这个lambda传一个元组,返回的是什么?)
言归正传,下面就是你应该怎么做的方法。一个lambda,它会返回一个元组:
>>> sorted(items, key=lambda x: (x[0], x[1].lower()))
[(0, 'a'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A')]
现在你完成了它!谢谢Axel的分享!
我确信你知道你可以倒序排列,仅仅使用sorted(items, reverse=True, …),但是你怎么根据关键字来进行不同的排序?
使用lambda函数返回元组的技巧,下面是一个我们排序一个稍微高级的数据结构:
>>> peeps = [{'name': 'Bill', 'salary': 1000}, {'name': 'Bill', 'salary': 500}, {'name': 'Ted', 'salary': 500}]
现在,使用lambda函数返回一个元组的特性来排序:
>>> sorted(peeps, key=lambda x: (x['name'], x['salary']))
[{'salary': 500, 'name': 'Bill'}, {'salary': 1000, 'name': 'Bill'}, {'salary': 500, 'name': 'Ted'}]
很有意思,对吧?Bill 在Ted的前面,并且500在1000的前面。但是如何在相同的 name 下,对 salary 反向排序?很简单,对它取反:
>>> sorted(peeps, key=lambda x: (x['name'], -x['salary']))
[{'salary': 1000, 'name': 'Bill'}, {'salary': 500, 'name': 'Bill'}, {'salary': 500, 'name': 'Ted'}]
问题:将列表[[1, 2, 3], [4, 5, 6], [7, 8, 9]]排序为[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
分析:
1.转变过程如下:
1 2 3 1 4 7
4 5 6 —> 2 5 8
7 8 9 3 6 9
可以将变换过程看成是原二维数组行(row)变成新数组的列(column),即抽出原数组第一行(row)作为第一列(column),第二行(row)作为第二列(column)…当然也可以将变换过程看成是原数组的列变为新数组的行,限于时间,就暂不考虑这种实现方式。
2.最原始的做法,写两个for循环,外层循环依次迭代数组的行(row),内层循环迭代数组的列(column),来实现这个反转过程,将原数组第一行(row)作为第一列(column),第二行(row)作为第二列(column),过程如下:
In [7]: l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
In [8]: len_row = 3
In [9]: len_col = 3
In [10]: temp = [[],[],[]]
In [11]: for row in l:
....: for i in range(len_col):
....: temp[i].append(row[i])
....: print temp
....:
[[1], [2], [3]]
[[1, 4], [2, 5], [3, 6]]
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
In [12]:
当然,还可以使用列表推导来做,原理和上面一样,外层迭代row,内层迭代col,生成新的列表:
In [100]: l
Out[100]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
In [101]: [[row[col] for row in l] for col in range(len(l[0])) ]
Out[101]: [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
最后,对这个题目,用zip也可以达到同样的目的:
In [104]: l
Out[104]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
In [105]: zip(*l)
Out[105]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
In [106]: map(list,zip(*l))
Out[106]: [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
*这个符号和列表配合有解压的意思,如l=[[1, 2, 3], [4, 5, 6], [7, 8, 9]],则我理解*l就变成了[1, 2, 3], [4, 5, 6], [7, 8, 9]这样三个值,所以zip(*l)和zip([1, 2, 3], [4, 5, 6], [7, 8, 9])的结果才会是一样的,如下:
In [17]: l=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
In [18]: zip([1, 2, 3], [4, 5, 6], [7, 8, 9])
Out[18]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
In [19]: zip(*l)
Out[19]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
In [20]:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15