
这篇文章主要介绍了python数据结构之二叉树的递归遍历实例,需要的朋友可以参考下
遍历方案
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
1).访问结点本身(N)
2).遍历该结点的左子树(L)
3).遍历该结点的右子树(R)
有次序:
NLR、LNR、LRN
遍历的命名
根据访问结点操作发生位置命名:
NLR:前序遍历(PreorderTraversal亦称(先序遍历)) ——访问结点的操作发生在遍历其左右子树之前。
LNR:中序遍历(InorderTraversal) ——访问结点的操作发生在遍历其左右子树之中(间)。
LRN:后序遍历(PostorderTraversal) ——访问结点的操作发生在遍历其左右子树之后。
注:由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
遍历算法
1).先序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.访问根结点
b.遍历左子树
c.遍历右子树
2).中序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.访问根结点
c.遍历右子树
3).后序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
a.遍历左子树
b.遍历右子树
c.访问根结点
一、二叉树的递归遍历:
代码如下:
# -*- coding: utf - 8 - *-
class TreeNode(object):
def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data
class BTree(object):
def __init__(self, root=0):
self.root = root
def is_empty(self):
if self.root is 0:
return True
else:
return False
def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
if treenode is 0:
return
print treenode.data
self.preorder(treenode.left)
self.preorder(treenode.right)
def inorder(self, treenode):
'中序(in-order,LNR'
if treenode is 0:
return
self.inorder(treenode.left)
print treenode.data
self.inorder(treenode.right)
def postorder(self, treenode):
'后序(post-order,LRN)遍历'
if treenode is 0:
return
self.postorder(treenode.left)
self.postorder(treenode.right)
print treenode.data
node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root')
bt = BTree(root)
print u'''
#生成的二叉树
# ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# -------------------------
'''
print '前序(pre-order,NLR)遍历 :\n'
bt.preorder(bt.root)
print '中序(in-order,LNR) 遍历 :\n'
bt.inorder(bt.root)
print '后序(post-order,LRN)遍历 :\n'
bt.postorder(bt.root)
二、.二叉树的非递归遍历
下面就用非递归的方式实现一遍。主要用到了 stack 和 queue维护一些数据节点:
复制代码 代码如下:
# -*- coding: utf - 8 - *-
class TreeNode(object):
def __init__(self, left=0, right=0, data=0):
self.left = left
self.right = right
self.data = data
class BTree(object):
def __init__(self, root=0):
self.root = root
def is_empty(self):
if self.root is 0:
return True
else:
return False
def preorder(self, treenode):
'前序(pre-order,NLR)遍历'
stack = []
while treenode or stack:
if treenode is not 0:
print treenode.data
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
treenode = treenode.right
def inorder(self, treenode):
'中序(in-order,LNR) 遍历'
stack = []
while treenode or stack:
if treenode:
stack.append(treenode)
treenode = treenode.left
else:
treenode = stack.pop()
print treenode.data
treenode = treenode.right
# def postorder(self, treenode):
# stack = []
# pre = 0
# while treenode or stack:
# if treenode:
# stack.append(treenode)
# treenode = treenode.left
# elif stack[-1].right != pre:
# treenode = stack[-1].right
# pre = 0
# else:
# pre = stack.pop()
# print pre.data
def postorder(self, treenode):
'后序(post-order,LRN)遍历'
stack = []
queue = []
queue.append(treenode)
while queue:
treenode = queue.pop()
if treenode.left:
queue.append(treenode.left)
if treenode.right:
queue.append(treenode.right)
stack.append(treenode)
while stack:
print stack.pop().data
def levelorder(self, treenode):
from collections import deque
if not treenode:
return
q = deque([treenode])
while q:
treenode = q.popleft()
print treenode.data
if treenode.left:
q.append(treenode.left)
if treenode.right:
q.append(treenode.right)
node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root')
bt = BTree(root)
print u'''
#生成的二叉树
# ------------------------
# root
# 7 8
# 6
# 2 5
# 1 3 4
#
# -------------------------
'''
print '前序(pre-order,NLR)遍历 :\n'
bt.preorder(bt.root)
print '中序(in-order,LNR) 遍历 :\n'
bt.inorder(bt.root)
print '后序(post-order,LRN)遍历 :\n'
bt.postorder(bt.root)
print '层序(level-order,LRN)遍历 :\n'
bt.levelorder(bt.root)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28