
大数据时代正聚集改变的能量 _数据分析师
大数据时代需要重视统计学
我们现在要开始重视大数据,要重视统计学,因为在数据足够大了之后,我们突然发现一切社会现象到最后都有统计规律,它不像物理学那样可以准确的去描述因果的关系,它从本质上来说就是一个统计的规律。统计学学好了,你再去学别的都战无不胜,因为一切社会现象到最后都是一个统计规律。
为什么要强调统计学呢,因为我们的认知能力中最差的是统计思维。人的大脑有一些功能优良得超过我们的想象,比如我们的语言能力。著名的语言学家乔姆斯基曾说,其实语言不是你学来的,语言是你天生就会的,因为语言太复杂了,要是从出生再学语言根本学不会,等你出生的时候,你的大脑里头已经预装了一套操作系统,语言的操作系统。所以语言我们是天生就会的。还有,比如我们察言观色的能力,也是天生就会的。但有,一些是我们不会的。一位得诺贝尔经济学的心理学家写过一本书,《思考快与慢》。里面就讲到,我们有很多思维是靠直觉的快思维,这是我们几万年、几十万年、几百万年的自然演化,然后给我们留下来的,就是第六感觉。当你觉得可能有危险的时候,你就会跑掉。但是呢,我们另外一套操作系统是用来做逻辑推理以及进行统计分析的,装得很烂,所以我们天生缺的是逻辑推理能力和统计思维能力。
所以,在大数据的时代,我们最需要补的,其实是我们认知能力中最差的统计思维。如果有在学校的学生,我建议统计学这门课要好好地上。
“大数据”何以成为热门词汇?
为什么突然之间,大数据变成了一个最热门的词汇?
首先是由于IT革命。IT革命之后,我们有了很多处理数据的能力,对计算机数据的处理能力、存储的能力和计算的能力不断的提高。人类储存信息量的增长速度比世界经济增长的速度要快4倍,而且这还是在金融危机爆发之前的世界经济增长的速度。而计算机数据处理能力的增长速度,比世界经济增长的速度要快9倍。
其次,能够被数据化的东西越来越多。最早的时候是数字可以被数据化,所以我们有了阿拉伯的计数,后来又出现了二进位,再后来我们发现文字也可以处理成数据,然后我们发现又图像也可以处理成数据。我不知道欧美同学会《时代大讲堂》位置在哪里,我就赶紧上网查一查地图,方位也可以被数据化;你用微信、微博,跟朋友在网上交流,说明你的社会关系也会被数据化。
所以这就是为什么现在要谈大数据,因为可处理的东西太多了。而当你能够被数据化的东西越来越多。当你能够拿到的数据越来越多时,就跟原来不一样了。原来的统计学得有一个抽样,因为你不可能拿到整体,因为整体太多了,而且无法去计算。而现在,当存储能力无限扩大,处理数据的计算能力不断的进步,致使现在我们所处理的往往不是一个样本数据,而是一个整体的数据。所以这个时候,有很多原来想都不能想的事情,现在你可以去做。
大数据时代的三个规律
规律一:知其然而不必知其所以然,外行打败内行
规律二:彻底的价格歧视,商家比你更了解你自己
规律三:打破专家的信息优势,病人给医生解惑
大数据带来的风险:用你的隐私去赚钱
大数据时代,通过承受小风险来避免大风险
大数据并非万能,重在改变固有思维模式
大数据的启示:东方思维的优势不能丢
从大数据的角度看,房价一定会下跌
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07