京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代正聚集改变的能量 _数据分析师
大数据时代需要重视统计学
我们现在要开始重视大数据,要重视统计学,因为在数据足够大了之后,我们突然发现一切社会现象到最后都有统计规律,它不像物理学那样可以准确的去描述因果的关系,它从本质上来说就是一个统计的规律。统计学学好了,你再去学别的都战无不胜,因为一切社会现象到最后都是一个统计规律。
为什么要强调统计学呢,因为我们的认知能力中最差的是统计思维。人的大脑有一些功能优良得超过我们的想象,比如我们的语言能力。著名的语言学家乔姆斯基曾说,其实语言不是你学来的,语言是你天生就会的,因为语言太复杂了,要是从出生再学语言根本学不会,等你出生的时候,你的大脑里头已经预装了一套操作系统,语言的操作系统。所以语言我们是天生就会的。还有,比如我们察言观色的能力,也是天生就会的。但有,一些是我们不会的。一位得诺贝尔经济学的心理学家写过一本书,《思考快与慢》。里面就讲到,我们有很多思维是靠直觉的快思维,这是我们几万年、几十万年、几百万年的自然演化,然后给我们留下来的,就是第六感觉。当你觉得可能有危险的时候,你就会跑掉。但是呢,我们另外一套操作系统是用来做逻辑推理以及进行统计分析的,装得很烂,所以我们天生缺的是逻辑推理能力和统计思维能力。
所以,在大数据的时代,我们最需要补的,其实是我们认知能力中最差的统计思维。如果有在学校的学生,我建议统计学这门课要好好地上。
“大数据”何以成为热门词汇?
为什么突然之间,大数据变成了一个最热门的词汇?
首先是由于IT革命。IT革命之后,我们有了很多处理数据的能力,对计算机数据的处理能力、存储的能力和计算的能力不断的提高。人类储存信息量的增长速度比世界经济增长的速度要快4倍,而且这还是在金融危机爆发之前的世界经济增长的速度。而计算机数据处理能力的增长速度,比世界经济增长的速度要快9倍。
其次,能够被数据化的东西越来越多。最早的时候是数字可以被数据化,所以我们有了阿拉伯的计数,后来又出现了二进位,再后来我们发现文字也可以处理成数据,然后我们发现又图像也可以处理成数据。我不知道欧美同学会《时代大讲堂》位置在哪里,我就赶紧上网查一查地图,方位也可以被数据化;你用微信、微博,跟朋友在网上交流,说明你的社会关系也会被数据化。
所以这就是为什么现在要谈大数据,因为可处理的东西太多了。而当你能够被数据化的东西越来越多。当你能够拿到的数据越来越多时,就跟原来不一样了。原来的统计学得有一个抽样,因为你不可能拿到整体,因为整体太多了,而且无法去计算。而现在,当存储能力无限扩大,处理数据的计算能力不断的进步,致使现在我们所处理的往往不是一个样本数据,而是一个整体的数据。所以这个时候,有很多原来想都不能想的事情,现在你可以去做。
大数据时代的三个规律
规律一:知其然而不必知其所以然,外行打败内行
规律二:彻底的价格歧视,商家比你更了解你自己
规律三:打破专家的信息优势,病人给医生解惑
大数据带来的风险:用你的隐私去赚钱
大数据时代,通过承受小风险来避免大风险
大数据并非万能,重在改变固有思维模式
大数据的启示:东方思维的优势不能丢
从大数据的角度看,房价一定会下跌
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03