京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小米论坛在短短四年时间里,拥有注册用户2000万,总发帖量超过两亿条。其中,操作系统MIUI就收集到上亿个用户反馈贴,帖子打印出来的纸张可绕地球一圈。两亿条用户反馈贴,是不是大数据呢?当然是,都是客户意见、建议的真实表达,都是需求、问题的直接陈述,是含金量极高的大数据,是许多手机厂商艳羡的大数据。
被冠以小米口碑营销内部手册的《参与感》对大数据只字未提,笔者也未搜索到雷军在公开讲述小米模式时提及大数据。但这不表明雷军不重视大数据,作为全国人大代表,他2014年的提案就是《关于加快实施大数据国家战略的建议》。我以为小米是目前大数据应用最成功的企业之一。
大数据背后是海量的客户,要让数量不多的员工,真正面对数百万、甚至上千万的客户,这在互联网出现以前简直是天方夜谭。
传统媒体也能面对巨量的客户,比如人民日报,据官方数据,2013年1月1日,人民日报发行量超过300万份。但这是单向的,只是人民日报把党的声音传递给大家;这300多万读者(甚至更多,1张报纸可能多人看)的想法是无法都反馈给人民日报的;即使大家都写信给人民日报表达自己的心声,人民日报也没有足够的工作人员来拆读这些来信,也没有足够的版面来刊登这些来信。
互联网的出现,尤其是社交媒体的出现,让企业、员工面对巨量客户变为可能。让我们看看小米论坛是怎样处理海量的用户需求的:首先,在论坛做恰当的帖子辅助功能,帮助用户尽量格式化提交需求;其次,用户在碰到同样需求的同时,能直接跟着表达我也需要这个功能。这样,每周下来,紧急的功能开发需求自然会按热度排到帖子前面。小米将数据处理前移到了数据生成之前。
小米论坛里的这个小小的按钮我也需要这个功能,顶得上成千上万封人民日报读者来信主要观点的统计,顶得上无数场焦点小组的讨论收集的客户需求。这个小小的按钮,将有相近表达的人汇聚在了一起,小米员工对这个议题的回复,所有的人都能看见,无需一一回复。这就是大数据的力量。当然,大数据技术远比这个按钮要复杂得多。
阿里巴巴集团数据委员会委员长车品觉说:大数据的本质就是还原用户的真实需求。与其在数据中去找寻客户的意见、需求,那何不让企业、员工直接面对客户呢?小米更具革命性的做法是,要求员工全员泡论坛、刷微博。在小米,泡论坛就是工作。对那些认为小米客服面对用户就行了的工程师,小米联合创始人黎万强曾这样说:在小米不能这样干,如果你不理解,你就把它当成工作考核,而小米是没有KPI考核的。这说到底是让员工浸泡在大数据里,泡在客户堆里。
泡论坛可以了解客户需求,收集产品问题;可以回复用户的意见、建议;也可以追问用户问题,与用户进一步的沟通。小米员工泡论坛,让论坛上的小米用户倍感亲切,他们的声音有人倾听,他们的意见有可能被采纳,小米着力营造的参与感就显现出来了。这极大的鼓舞了论坛用户的活跃。通过论坛,小米用户真正参与了产品、营销的设计。这带来了一个企业与用户共赢的局面,企业根据用户意见改进产品,用户也拿到了自己想要的功能和产品。
更为重要的是,泡论坛实现了员工激励。相对于一个冷冰冰的大数据结果传到员工那里,以此指导员工工作;让员工直接面对客户,结合自己的工作来应用数据,员工的积极性会更高。小米员工直接面对客户,感受客户的喜怒哀乐,与客户建立感情,与客户做朋友。员工是在为朋友开发产品,为朋友服务,接受朋友的表扬与批评。这就是小米无KPI的秘诀:工作驱动真真切切来自用户的反馈。
简单说来,小米式大数据,是将数据处理前移到数据生成之前,是让员工浸泡在大数据里。小米的这两点做法帮助小米践行了用户参与,实现了KPI之外的员工工作驱动。在大家都在嚷嚷却不知道大数据怎么做的今天,这是更靠谱、更具操作性的大数据应用案例,值得借鉴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22