
大数据的世界正在稳步发展壮大。随着数据数量和种类的不断膨胀,读者都想知道接下来会发生什么。Sriram Mohan博士是罗斯豪曼理工学院计算机科学和软件工程的副教授。同时他还兼任着Avalon咨询公司大数据解决方案高级顾问一职。他融汇理论与实践于一身,他绝对是回答“2014年企业大数据发展趋势”的正确人选。下面是他的一些独到见解。
Sriram说,“Hadoop和MapReduce模式绝对是解决大数据问题的方式之一。但你需要记住的是,按照目前的情况来看,Hadoop仅仅是对于批处理来说比较好。相信很快,我们同时需要能够实时处理这些数据。”作为一名Hadoop顾问的Sriram并不是说这种无处不在的平台速度缓慢。使用这样一个强大的框架,大量数据可能在一分钟之内就处理完,但是那并不总是足够好。如何解决这个问题呢?
Hortonworks公司战略副总裁Shaun Connolly指出, Hadoop一直不断的变得更快更灵活。 “我们现在越来越明确的要求优化Hadoop使用的NoSQL数据库。它可以利用内存处理,这样请求就能更快的返回,而不使用批量处理。如果使用YARN,你其实可以基于内存做更多的交互式查询。”除此之外,还有一个热潮兴起的流式分析工具或过程依赖于像Storm这样的技术,开发人员就可以使用YARN这样的架构嵌入到Hadoop里面去。如今使用Hadoop的大数据用户都在研究近实时性能。然而,这并不是100%的实时,一个重要的区别在于,当组织使用计算机来做瞬间快速决定的时候,必须参照很久以前的分析报告,而这些可能已经被人为破坏。
这个时候LAMBDA架构就有了用武之地。它允许企业组织从他们大量数据中分离出增量数据进行单独处理。大部分的数据都进入到批处理系统中,而一个叫做“速度层”的对数据进行实时处理。NoSQL数据库(他们中的大部分)都有自己的生态系统,因为它们提供了专门的工具来管理数据,以适应特定案例。
整合将至关重要,但没有一个工具对大家都有效
说到向Hadoop提供援助之手,精心设计的工具正在以惊人的速度在大数据空降急剧增加。 ElasticSearch,Pentaho,以及许多其他工具覆盖了整个大数据生态系统不同细分市场。但下一个重要阶段是如何让他们能够更好的协同工作。直到这个阶段的到来,大数据的管理还将比较随意。
当然,这并不意味着一个集成产品将永远适合所有的商业模式。数据以多种形式出现,并且每个企业组织都希望利用这些信息做不同的事情。企业组织将需要使用各种不同的方式来处理他们的数据,根据数据的来源,格式,他们为什么收集,他们希望如何存储,他们想如何分析,还有他们需要以多快的速度来处理。我们希望在整合的同时仍然保持模块化。这将允许企业为自己独有的使用案例创建合适的工具时无需每次都重新开发。
熟悉大数据技术的软件工程师将会有很大的需求
Mohan指出,在大数据空间最显著的挑战之一,应该是与微乎其微的人才库相关。“拥有这方面经验的人才数量并不多。”这并不意味着软件工程师需要去上学并获得博士学位。技术工人并不需要一个博士学位来理解大数据。然而,他们确实需要掌握知识和专业技能。Sriram说,这个目标是任何一个愿意投入时间和精力的软件工程师都可以实现的。课堂上不一定是唯一的起点。经历努力实现关系型数据库规模并且过渡到非关系型数据库,让其都为掌握大数据问题奠定坚实的基础。
Mohan博士正在做的是,为当今的软件工程师准备未来的工作世界。他将在波士顿的Big Data TechCon提供两个教育机会:Hadoop的数据传输工具和MapReduce介绍。对于那些想要在未来几年成为就业市场高需求人才的人,现在就是开始时间。(文章来源:http://cda.pinggu.org/)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29