
Python数据分析之真实IP请求Pandas详解
这篇文章主要给大家介绍了Python数据分析之真实IP请求Pandas,文中通过示例嗲吗给大家介绍的很详细,相信对大家的学习或者理解具有一定的参考借鉴价值.pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:
from pandas import Series,DataFrame
import pandas as pd
1.1. Pandas分析步骤
1、载入日志数据
2、载入area_ip数据
3、将 real_ip 请求数 进行 COUNT。类似如下SQL:
SELECT inet_aton(l.real_ip),
count(*),
a.addr
FROM log AS l
INNER JOIN area_ip AS a
ON a.start_ip_num <= inet_aton(l.real_ip)
AND a.end_ip_num >= inet_aton(l.real_ip)
GROUP BY real_ip
ORDER BY count(*)
LIMIT 0, 100;
1.2. 代码
cat pd_ng_log_stat.py
#!/usr/bin/env python
#-*- coding: utf-8 -*-
from ng_line_parser import NgLineParser
import pandas as pd
import socket
import struct
class PDNgLogStat(object):
def __init__(self):
self.ng_line_parser = NgLineParser()
def _log_line_iter(self, pathes):
"""解析文件中的每一行并生成一个迭代器"""
for path in pathes:
with open(path, 'r') as f:
for index, line in enumerate(f):
self.ng_line_parser.parse(line)
yield self.ng_line_parser.to_dict()
def _ip2num(self, ip):
"""用于IP转化为数字"""
ip_num = -1
try:
# 将IP转化成INT/LONG 数字
ip_num = socket.ntohl(struct.unpack("I",socket.inet_aton(str(ip)))[0])
except:
pass
finally:
return ip_num
def _get_addr_by_ip(self, ip):
"""通过给的IP获得地址"""
ip_num = self._ip2num(ip)
try:
addr_df = self.ip_addr_df[(self.ip_addr_df.ip_start_num <= ip_num) &
(ip_num <= self.ip_addr_df.ip_end_num)]
addr = addr_df.at[addr_df.index.tolist()[0], 'addr']
return addr
except:
return None
def load_data(self, path):
"""通过给的文件路径加载数据生成 DataFrame"""
self.df = pd.DataFrame(self._log_line_iter(path))
def uv_real_ip(self, top = 100):
"""统计cdn ip量"""
group_by_cols = ['real_ip'] # 需要分组的列,只计算和显示该列
# 直接统计次数
url_req_grp = self.df[group_by_cols].groupby(
self.df['real_ip'])
return url_req_grp.agg(['count'])['real_ip'].nlargest(top, 'count')
def uv_real_ip_addr(self, top = 100):
"""统计real ip 地址量"""
cnt_df = self.uv_real_ip(top)
# 添加 ip 地址 列
cnt_df.insert(len(cnt_df.columns),
'addr',
cnt_df.index.map(self._get_addr_by_ip))
return cnt_df
def load_ip_addr(self, path):
"""加载IP"""
cols = ['id', 'ip_start_num', 'ip_end_num',
'ip_start', 'ip_end', 'addr', 'operator']
self.ip_addr_df = pd.read_csv(path, sep='\t', names=cols, index_col='id')
return self.ip_addr_df
def main():
file_pathes = ['www.ttmark.com.access.log']
pd_ng_log_stat = PDNgLogStat()
pd_ng_log_stat.load_data(file_pathes)
# 加载 ip 地址
area_ip_path = 'area_ip.csv'
pd_ng_log_stat.load_ip_addr(area_ip_path)
# 统计 用户真实 IP 访问量 和 地址
print pd_ng_log_stat.uv_real_ip_addr()
if __name__ == '__main__':
main()
运行统计和输出结果
python pd_ng_log_stat.py
count addr
real_ip
60.191.123.80 101013 浙江省杭州市
- 32691 None
218.30.118.79 22523 北京市
......
136.243.152.18 889 德国
157.55.39.219 889 美国
66.249.65.170 888 美国
[100 rows x 2 columns]
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作带来一定的帮助,如果有疑问大家可以留言交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15