
大数据时代,广告技术真能决定广告效果
广告技术爆发的标志无疑是程序化广告的兴起,受众购买、 实时竞价RTB、 需求方平台DSP、私有程序化PDB、数字广告管理云平台Trading Platform已经成为企业数字营销中的主流话题。eMarketer预计,2017年,在中国将有超过50%数字展示广告将通过程序化的方式实现 ,如此迅速的达到过半比例,这在5年前是无法想象的。
至于,广告技术从何开始,似乎缺少一个明确的答案。然而,如果我们了解广告技术的本质:通过技术消除信息不对称,实现海量广告信息和消费者的匹配,那么大数据时代的到来无疑是一切的开始。
大数据激活广告技术
大数据是指无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
在被广泛引用的IDC《2020年的数字宇宙报告》中,预测到2020年,全球数字宇宙将会膨胀到40000EB,均摊到每个人身上是5200GB以上,而这些是数字广告发展的能源材料。
成万上亿的数字媒体、不断创新的广告形式、不断变化的消费者注意力和兴趣爱好反应的正是大数据时代下的营销环境,来势凶猛,复杂多变。
大数据深刻地改变着广告形态,使得广告业成为大数据时代下首先受到冲击的产业;而广告技术随着大数据时代登上营销舞台,目的就是在连接无数的广告和消费者。
广告技术决定效果?
每一个广告主、每一个广告人都在研究广告技术,大家对广告技术的重视则引发了一个广泛的疑问:技术是否能减轻广告主对信息爆炸时代的不安感?技术是否能解决大数据时代下媒体环境割裂、消费者注意力分散的问题?
或者更直接的说, 技术在广告中的作用是什么?
我们看到,作为广告技术代表的程序化广告在很长的一段时间被扣上“精准广告”的帽子,认为通过技术一旦达成对目标人群的影响,就可以带来购买、下载等行动,绝对的精准有效。
总之,就是认为广告技术的好坏决定广告效果,而这显然是对广告技术最大的误解。
广告技术的真实作用
影响广告效果的因素是多重的,这是所有营销者都公认的一个常识。广告效果的达成是一个自然的非线性进程,不只关乎技术这一单向度要素,也包含由广告创意、广告承接等多维度的互动影响。
以最常见的电商程序化营销为例,品友在服务苏宁的过程中,需要通过系统算法和诸如Deeplink、LBS等技术服务,进行媒体筛选、人群判断、素材匹配, 从而优化点击率、到达率、降低转化单价。
但作为转化承载体的广告主,苏宁需要在投放期间的持续的进行数据回传、活动推广,同时其固有的APP用户体验也深刻的影响广告投放的最终效果。只有双方的配合,双剑合一,才能带来最高的转化率和理想的ROI。
就像《大数据时代》的作者维克托在谈到大数据的三个转变时提到,“我们不再热衷于寻找因果关系,而是事物之间的相关关系”,广告技术对广告效果的影响也同样是一个相关关系。
想想看,身在大数据时代,越来越多的营销正在打破企业传统数据边界,改变过去商业智能仅仅依靠企业内部业务数据的局面;运用远远超过企业内部数据的第二方数据、第三方数据,更促使如今的广告成为一个上下游高相关联动的整体。
广告技术通过对各方数据的学习和建模,进行预测性分析,从更高的纬度把消费者和广告主结合起来,拓展用户的应用深度和粘性,不断加深对消费者的影响,扮演着越来越重要的角色。
有人用这样一句话,描述大数据与技术的关系:大数据积累的极限是技术进步的起源;技术的极限则是大数据应用的边界。
那么,我们更有理由相信,随着信息收集方式的不断革新,算法技术的不断创新, 广告技术将不断朝着深度人工智能的方向发展,在大数据时代扮演越来越重要的角色,不断释放创意的能量,突破营销的边界!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29