
大数据的风口上,企业数据如何进行价值变现
对于大数据,研究机构Gartner给出了这样的定义:大数据是需要新处理模式,才能具有更强的决策力、洞察发现力和流程优化能力,来适应海量、高增长率和多样化的信息资产。
这两年可以看到越来越多的大数据公司诞生,试图挖掘公开数据这座矿山里的宝藏。大数据的价值不在数据本身,而在数据的应用上,而如何搭建应用场景,让大家对数据产生需求,正是大数据公司在做的事。
大数据公司到底在做什么?
企业信息查询和销售线索挖掘是企业数据应用的两个方向。
企业信息查询属于基础应用,如天眼查、企查查等数据平台,基于开放数据和共享的政府公共数据,实现数据采集、数据清洗、数据聚合和数据建模的一站式信息查询服务。在数据应用上,企查查偏向金融征信方面,通过与金融机构达成合作,获取第一手数据变动信息。对于个人用户,可以查到企业的工商信息、股东法人信息、诉讼失信信息等等;同时,企查查会给金融机构提供服务,并收取服务费,这也是其收入来源。而天眼查除了企业信息查询,还可以查到人和人、人和公司、公司和公司之间的关系,为用户在商业调查过程中提供关系信息支撑。
销售线索挖掘则是更深层次的大数据应用,将爬取到的互联网公开数据和来自政府机构等官方网站的工商信息,进行清洗和加工,构建可量化的用户画像,为不同领域的用户或企业提供销售解决方案。
譬如商理事,它是一个给企业销售人员提供线索的平台,用户在平台注册后就可以发布销售线索和合作资源,除了与天眼查合作开放数据,它的信息部分是来自用户自主上传,更类似于信息资源交换平台。
探迹则选择了不同的领域作为切入点,作为To B企业的销售预测解决方案提供商,探迹通过分析和挖掘全网在线企业数据信息,再结合企业内部的CRM系统,利用机器学习自动建立量化客户模型,为To B企业在全国数千万公司中精准挖掘潜在客户的线索。
可见,同样做大数据的公司,其具体业务也有根本差异,从企业信息查询到销售线索挖掘,企业数据逐渐向深层次、精细化的应用发展。
实际场景中的数据应用
个人篇
有时候,当求职者想应聘一家公司,除了官网信息和网络上的新闻,还有哪些渠道可以看到这家公司的具体信息呢?几乎没有,而对于求职者来说,了解公司是否合法成立、是否有拖欠工资等劳资纠纷行为是十分必要的,一个人想要搜集这些重要信息往往无从入手。
当投资者看中了一家初创企业,想了解更多的信息以决定是否投资的时候,除了基本的企业工商信息,可能还需要了解企业是否和其他公司、其他投资人有关系,而这些信息并不容易获取。
企业信息查询平台的出现,解决了这个痛点,用户可以在上面查询企业的工商信息、股东法人信息、诉讼失信信息等等,直观地了解投资人和公司、公司和公司之间的关系等,节省了搜集、筛选信息的时间和精力。
企业篇
当下,大数据对企业的商业决策和行为越来越重要,依靠传统的市场调研或购买调查报告等方式,得到的往往是滞后的数据信息,而企业自身又缺乏信息挖掘的技术和资源,难以获取到实时、精准的商业数据信息。
譬如销售,通常是企业收入来源的重要部门,对于新客营销来说,对目标客户群体的认知不够充分、销售线索和品牌客户太少等问题,会让企业在开拓新客户上寸步难行;而在客户维护上,企业CRM通常缺少优化的工具,难以从中筛选出有效的营销线索。这导致传统的企业销售人员只能依靠人工经验,在对方需求不明的情况下逐一联系客户进行销售,客户意向率自然不高。
像这类问题属于销售预测领域,这是目前企业数据的一个重要应用,尤其是对于To B企业,对销售线索的需求量非常大,而企业自身难以提供大量资源去寻找潜在企业客户的线索。
针对To
B企业领域的销售预测,探迹给出了更智能的解决方案:运用人工智能和大数据技术,挖掘全网在线企业信息,建立企业知识图谱,帮企业从知识图谱中匹配优质潜在客户。此外,探迹还会对潜在客户评分,通过丰富线索难度,计算与模型的契合度,帮助客户把现有的销售线索进行打分和排序,从而聚焦更高价值的潜在客户。
对To B企业而言,通过探迹智能预测平台,能够方便快捷地获取精准的潜在客户线索,而无需做客户调研、信息搜集等繁琐的前端销售工作,销售人员能节省大量的时间精力放在精准客户上。
企业数据做为大数据的一部分,在商业市场中越来越受到重视,而大数据公司要如何将数据变成宝藏,则需要深入到具体的应用场景去提供解决方案,增加用户和数据的黏性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15