
大数据技术以及应用发展
在大数据技术和大数据应用如火如荼的发展过程中,我们更要冷静地思考问题的本质,探讨究竟什么是大数据的技术和大数据应用。技术是指基于科学原理发明的、用于管控或改造“被察对象”的手段和方法。大数据技术则指以大数据为“对象”而开展的有效、高效的数据处置方法的研究,而不仅仅是用基于数据的方法来解决问题。就其本质特性而言,大数据不会是一个可完全“解决”的问题,只能通过种种技术手段逐步“迫近”它,以缓解大数据给我们带来的困扰。大数据问题源于互联网及其延伸带来的无处不在的信息技术应用以及信息化成本的不停降低。解决大数据问题,而且有效、高效地应用基于数据的方法,其关键依然是需要依赖有效、高效的计算技术。
大数据给我们带来了一系列新的挑战。要应对这些挑战,需要多个领域的交叉合作,模型、方法和算法都极度主要。然而,无论模型和算法怎样先进,面临大数据,人力、人脑均无能为力,必须依赖计算技术和工具,才能满足数据的获取和筛选、组织和存储、处置和应用等各个环节的计算需要。在此过程中,可能需要转变传统的计算模式及其计算系统演进方式。
大数据给软件的编程模型及其编程语言带来了新的挑战。编程模型可分为 3 个条理:(1) 低级模型及语言,直接面向计算机硬件系统结构,通常由计算机专业人员使用,具有性能可控、可预测的优点,但编程难度较大,在软件系统开发中编程效率较低、错误率高;(2) 高级模型及语言,直接面向系统软件,通常通用性较好,但性能依赖于软件工程师的编程水平和编译器的能力,语言机制设计和实现难度大;(3) 终端模型及编程,希望面向终端用户,为了便于业务人员使用,即提高易用性,可能仅针对特定的应用领域进行优化设计,因此会造成应用面窄、性能不行预测等问题。对于大数据应用来说,最理想的是接纳终端编程模型,可以面向差别领域的大数据应用,为最终用户提供直接的数据应用编程能力。但这种模型很可能遇到较大的性能问题,需要底层软硬件在结构上的支持以及高效的编译实现。
随着大数据应用的日益广泛,差别类型的应用在规模、易用性、成本、能耗等方面需求迥异,系统伸缩性的解决方案也受多方面的条件制约,因此需要能够针对差别需求灵活选择技术途径,而非牢固通用模式。凭应用需求,通过改变数据的存储方式,将需要访问的数据集中存放,可以使访问性能提高数百倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23