京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言与函数估计学习笔记(样条方法)
样条估计
如果函数在不同地方有不同的非线性度,或者有多个极值点,那么用多项式特别是低阶多项式来完成拟合是非常不合适的。一种解决办法是我们之前提到的近邻多项式(或者称局部多项式),另一种就是样条——用分段的低阶多项式逼近函数。
关于样条,常用的有两类,一类是多项式样条,另一类是光滑样条。
多项式样条
多项式样条的样条基有很多,最为著名的是我们之前在函数逼近中提到的truncated power basis与B-spline basis。我们这里十分简要的介绍一下B样条,B样条基下的函数逼近可以写为:

其中

上式中
否则取0.在R中splines包的函数bs()提供了B样条估计,其调用格式为:
bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE, Boundary.knots = range(x))
对于参数df值得说明的是df=degree+(Knots个数),attr(,“knots”)会显示划分点,我们常用的3次B样条公式: df=k+3 (不含常数项)
我们以前面提到的essay data为例说明B样条的估计情况:
easy <- read.table("D:/R/data/easysmooth.dat", header = T)
x <- easy$X
y <- easy$Y
m.bsp <- lm(y ~ bs(x, df = 6))
s = function(x) {
(x^3) * sin((x + 3.4)/2)
}
x.plot = seq(min(x), max(x), length.out = 1000)
y.plot = s(x.plot)
plot(x, y, xlab = "Predictor", ylab = "Response")
lines(x.plot, y.plot, lty = 1, col = 1)
lines(x, fitted(m.bsp), lty = 2, col = 2)
attr(bs(x, df = 6), "knots") #可以将看到,节点在不指定的情况下默认的是均匀样条,当然,我们可以根据散点图给#出节点的具体选择。
## 25% 50% 75%
## -1.875 -0.250 1.375
m.bsp1 <- lm(y ~ bs(x, df = 6, knots = c(-2.5, -1, 2)))
lines(x, fitted(m.bsp1), lty = 3, col = 3)

AIC(m.bsp)
## [1] 718.1
AIC(m.bsp1)
## [1] 727.4
summary(m.bsp)
##
## Call:
## lm(formula = y ~ bs(x, df = 6))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.790 -0.911 -0.065 0.892 4.445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.816 0.622 2.92 0.0039 **
## bs(x, df = 6)1 -10.552 1.161 -9.09 < 2e-16 ***
## bs(x, df = 6)2 -7.127 0.755 -9.44 < 2e-16 ***
## bs(x, df = 6)3 0.813 0.926 0.88 0.3808
## bs(x, df = 6)4 -4.056 0.859 -4.72 4.5e-06 ***
## bs(x, df = 6)5 5.781 0.967 5.98 1.1e-08 ***
## bs(x, df = 6)6 -3.505 0.865 -4.05 7.4e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.42 on 193 degrees of freedom
## Multiple R-squared: 0.824, Adjusted R-squared: 0.819
## F-statistic: 151 on 6 and 193 DF, p-value: <2e-16
可以看到B样条基本很接近真实函数了,summary(m.bsp)报告了各个系数的估计,带入f(x)的B样条基展开中即可得到一个显式的表达式。
光滑样条
虽然B样条已经很好了,但是理论与实践都表明直接用最小二乘去求解系数效果不好,容易过拟合。一个可能的改进是光滑样条。所谓的光滑样条,就是在求解最小二乘时给估计函数f(x)加上了一定的惩罚,这个有点类似压缩估计。我们这里采用最常用的光滑性惩罚,得到函数f(x)的估计m(x)满足如下的惩罚最小二乘:

在R的splines包中提供了函数smooth.spline来求解光滑样条
easy <- read.table("D:/R/data/easysmooth.dat", header = T)
x <- easy$X
y <- easy$Y
s.hat <- smooth.spline(x, y)
## OUTPUT
s.hat
## Call: ## smooth.spline(x = x, y = y) ## ## Smoothing Parameter spar= 0.7251 lambda= 0.0002543 (12 iterations) ## Equivalent Degrees of Freedom (Df): 11.56 ## Penalized Criterion: 380.9 ## GCV: 2.145
## OUTPUT PLOTS
s <- function(x) {
(x^3) * sin((x + 3.4)/2)
}
x.plot = seq(min(x), max(x), length.out = 1000)
y.plot = s(x.plot)
plot(x, y, xlab = "Predictor", ylab = "Response")
lines(x.plot, y.plot, lty = 1, col = 1)
lines(s.hat, lty = 2, col = 2)
最后我们来讲一下怎么计算出m(x),这里我们使用Reinsch algorithm。Step 1: 计算向量Q′y.Step 2: 找到一个非0对角阵R+λQ′Q使得它可以进行Cholesky分解,有因子L,DStep 3: 解方程:(R+λQ′Q)γ=Q′yStep 4: 得到估值m=y−αQγ.上面的Q与R可以表示为:

上面的t表示节点。我们不妨来算算essay data的例子:
easy <- read.table("D:/R/data/easysmooth.dat", header = T)
x <- easy$X
y <- easy$Y
n <- length(y)
knots <- seq(min(x), max(x), length = n + 1)
h <- knots[-1] - knots[-n]
Q <- matrix(0, n, n - 2)
R <- matrix(0, n - 2, n - 2)
for (i in 1:(n - 2)) {
Q[i, i] = 1/h[i]
Q[i + 1, i] = -1/h[i] - 1/h[i + 1]
Q[i + 2, i] = 1/h[i + 1]
}
for (i in 2:(n - 2)) {
R[i, i] = 1/6 * (h[i] + h[i + 1])
R[i - 1, i] = h[i]/6
R[i, i - 1] = h[i]/6
}
R[1, 1] = 1/6 * (h[1] + h[2])
lambda <- 0.2
A <- R + lambda * t(Q) %*% Q
gamma <- solve(A, t(Q) %*% as.matrix(y))
g <- as.matrix(y) - lambda * Q %*% gamma
s <- function(x) {
(x^3) * sin((x + 3.4)/2)
}
x.plot <- seq(min(x), max(x), length.out = 1000)
y.plot <- s(x.plot)
plot(x, y, xlab = "Predictor", ylab = "Response")
lines(x.plot, y.plot, lty = 1, col = 1)
lines(x, g, lty = 2, col = 2)
在惩罚系数为0.2的情况下,拟合还是不坏的,不是吗?至于为什么可以这样算,我们只要注意到\int [m^{''}(x)]dx=m^'(x_i)QR^{-1}Q^'m(x_i),估计的问题就与我们十分熟悉的lasso,岭回归十分相像了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06