Python变量类型
变量是保存存储值的内存位置。也就是说,当创建一个变量时,可以在内存中保留一些空间。
基于变量的数据类型,解释器分配内存并决定可以存储在保留的存储器中的内容。 因此,通过为变量分配不同的数据类型,可以在这些变量中存储的数据类型为整数,小数或字符等等。
将值分配给变量
在Python中,变量不需要明确的声明类型来保留内存空间。当向变量分配值时,Python会自动发出声明。 等号(=)用于为变量赋值。
=运算符左侧的操作数是变量的名称,而=运算符右侧的操作数是将在存储在变量中的值。 例如 -
#!/usr/bin/python3counter=100# 一个整型数miles=999.99# 一个浮点数name="Maxsu"# 一个字符串site_url="http://www.yiibai.com"# 一个字符串print(counter)print(miles)print(name)print(site_url)
这里,100,999.99和“Maxsu”分别是分配给counter,miles和name变量的值。执行上面代码将产生以下结果 -
100 999.99 Maxsu http://www.yiibai.com
Shell
多重赋值
Python允许同时为多个变量分配单个值。
例如 -
a=b=c=1
这里,创建一个整数对象,其值为1,并且所有三个变量都分配给相同的内存位置。还可以将多个对象分配给多个变量。 例如 -
a,b,c=10,20,"maxsu"
这里,将两个值为10和20的整数对象分别分配给变量a和b,并将一个值为“maxsu”的字符串对象分配给变量c。
标准数据类型
存储在内存中的数据可以是多种类型。 例如,一个人的年龄可存储为一个数字值,他的地址被存储为字母数字字符串。 Python具有各种标准数据类型,用于定义可能的操作以及每个标准数据类型的存储方法。
Python有五种标准数据类型 -
1.数字
2.字符串
3.列表
4.元组
5.字典
1.Python数字
数字数据类型存储数字值。当为其分配值时,将创建数字对象。 例如 -
var1=10var2=20
可以使用del语句删除对数字对象的引用。del语句的语法是 -
delvar1[,var2[,var3[....,varN]]]]
可以使用del语句删除单个对象或多个对象。
例如 -
delvardelvar_a,var_b
Python支持三种不同的数值类型 -
int(有符号整数)
float(浮点实值)
complex(复数)
Python3中的所有整数都表示为长整数。 因此,长整数没有单独的数字类型。
例子
以下是一些数字示例 -
复数是由x + yj表示的有序对的实数浮点数组成,其中x和y是实数,j是虚数单位。
2.Python字符串
Python中的字符串被标识为在引号中表示的连续字符集。Python允许双引号或双引号。 可以使用片段运算符([]和[:])来获取字符串的子集(子字符串),其索引从字符串开始处的索引0开始,并且以-1表示字符串中的最后一个字符。
加号(+)是字符串连接运算符,星号(*)是重复运算符。例如 -
#!/usr/bin/python3
#coding=utf-8
# save file: variable_types_str1.py
str = 'yiibai.com'
print ('str = ', str) # Prints complete string
print ('str[0] = ',str[0]) # Prints first character of the string
print ('str[2:5] = ',str[2:5]) # Prints characters starting from 3rd to 5th
print ('str[2:] = ',str[2:]) # Prints string starting from 3rd character
print ('str[-1] = ',str[-1]) # 最后一个字符,结果为:'!'
print ('str * 2 = ',str * 2) # Prints string two times
print ('str + "TEST" = ',str + "TEST") # Prints concatenated string
Python
将上面代码保存到 variable_types_str1.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_str1.py
str = yiibai.com
str[0] = y
str[2:5] = iba
str[2:] = ibai.com
str[-1] = m
str * 2 = yiibai.comyiibai.com
str + "TEST" = yiibai.comTEST
F:\worksp\python>
Shell
2.Python列表
列表是Python复合数据类型中最多功能的。 一个列表包含用逗号分隔并括在方括号([])中的项目。在某种程度上,列表类似于C语言中的数组。它们之间的区别之一是Python列表的所有项可以是不同的数据类型,而C语言中的数组只能是同种类型。
存储在列表中的值可以使用切片运算符([]和[])来访问,索引从列表开头的0开始,并且以-1表示列表中的最后一个项目。 加号(+)是列表连接运算符,星号(*)是重复运算符。例如 -
#!/usr/bin/python3
#coding=utf-8
# save file: variable_types_str1.py
list = [ 'yes', 'no', 786 , 2.23, 'minsu', 70.2 ]
tinylist = [100, 'maxsu']
print ('list = ', list) # Prints complete list
print ('list[0] = ',list[0]) # Prints first element of the list
print ('list[1:3] = ',list[1:3]) # Prints elements starting from 2nd till 3rd
print ('list[2:] = ',list[2:]) # Prints elements starting from 3rd element
print ('list[-3:-1] = ',list[-3:-1])
print ('tinylist * 2 = ',tinylist * 2) # Prints list two times
print ('list + tinylist = ', list + tinylist) # Prints concatenated lists
Python
将上面代码保存到 variable_types_str1.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_list.py
list = ['yes', 'no', 786, 2.23, 'minsu', 70.2]
list[0] = yes
list[1:3] = ['no', 786]
list[2:] = [786, 2.23, 'minsu', 70.2]
list[-3:-1] = [2.23, 'minsu']
tinylist * 2 = [100, 'maxsu', 100, 'maxsu']
list + tinylist = ['yes', 'no', 786, 2.23, 'minsu', 70.2, 100, 'maxsu']
F:\worksp\python>
Shell
3.Python元组
元组是与列表非常类似的另一个序列数据类型。元组是由多个值以逗号分隔。然而,与列表不同,元组被括在小括号内(())。
列表和元组之间的主要区别是 - 列表括在括号([])中,列表中的元素和大小可以更改,而元组括在括号(())中,无法更新。元组可以被认为是只读列表。 例如 -
#!/usr/bin/python3
#coding=utf-8
# save file : variable_types_tuple.py
tuple = ( 'maxsu', 786 , 2.23, 'yiibai', 70.2 )
tinytuple = (999.0, 'maxsu')
# tuple[1] = 'new item value' 不能这样赋值
print ('tuple = ', tuple) # Prints complete tuple
print ('tuple[0] = ', tuple[0]) # Prints first element of the tuple
print ('tuple[1:3] = ', tuple[1:3]) # Prints elements starting from 2nd till 3rd
print ('tuple[-3:-1] = ', tuple[-3:-1]) # 输出结果是什么?
print ('tuple[2:] = ', tuple[2:]) # Prints elements starting from 3rd element
print ('tinytuple * 2 = ',tinytuple * 2) # Prints tuple two times
print ('tuple + tinytuple = ', tuple + tinytuple) # Prints concatenated tuple
Python
将上面代码保存到 variable_types_tuple.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_tuple.py
tuple = ('maxsu', 786, 2.23, 'yiibai', 70.2)
tuple[0] = maxsu
tuple[1:3] = (786, 2.23)
tuple[-3:-1] = (2.23, 'yiibai')
tuple[2:] = (2.23, 'yiibai', 70.2)
tinytuple * 2 = (999.0, 'maxsu', 999.0, 'maxsu')
tuple + tinytuple = ('maxsu', 786, 2.23, 'yiibai', 70.2, 999.0, 'maxsu')
F:\worksp\python>
Shell
以下代码对于元组无效,因为尝试更新元组,但是元组是不允许更新的。类似的情况可能与列表 -
#!/usr/bin/python3
tuple = ( 'abcd', 786 , 2.23, 'john', 70.2 )
list = [ 'abcd', 786 , 2.23, 'john', 70.2 ]
tuple[2] = 1000 # 无法更新值,程序出错
list[2] = 1000 # 有效的更新,合法
Python
Python字典
Python的字典是一种哈希表类型。它们像Perl中发现的关联数组或散列一样工作,由键值对组成。字典键几乎可以是任何Python数据类型,但通常为了方便使用数字或字符串。另一方面,值可以是任意任意的Python对象。
字典由大括号({})括起来,可以使用方括号([])分配和访问值。例如 -
#!/usr/bin/python3
#coding=utf-8
# save file : variable_types_dict.py
dict = {}
dict['one'] = "This is one"
dict[2] = "This is my"
tinydict = {'name': 'maxsu', 'code' : 1024, 'dept':'IT Dev'}
print ("dict['one'] = ", dict['one']) # Prints value for 'one' key
print ('dict[2] = ', dict[2]) # Prints value for 2 key
print ('tinydict = ', tinydict) # Prints complete dictionary
print ('tinydict.keys() = ', tinydict.keys()) # Prints all the keys
print ('tinydict.values() = ', tinydict.values()) # Prints all the values
Python
将上面代码保存到 variable_types_dict.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_dict.py
dict['one'] = This is one
dict[2] = This is my
tinydict = {'name': 'maxsu', 'code': 1024, 'dept': 'IT Dev'}
tinydict.keys() = dict_keys(['name', 'code', 'dept'])
tinydict.values() = dict_values(['maxsu', 1024, 'IT Dev'])
Shell
字典中的元素没有顺序的概念。但是说这些元素是“乱序”是不正确的; 它们是无序的。
数据类型转换
有时,可能需要在内置类型之间执行转换。要在类型之间进行转换,只需使用类型名称作为函数即可。
有以下几种内置函数用于执行从一种数据类型到另一种数据类型的转换。这些函数返回一个表示转换值的新对象。它们分别如下所示 -
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03