
挖掘大数据蕴含的大价值
要使《关于促进大数据发展的行动纲要》尽快落到实处,必须在政府序列中明确大数据的牵头责任单位,并要求政府各主管部门制定大数据发展规划;必须积极推动相关法律法规的制定与完善,推动和促进数据的开放与国家秘密、个人隐私的保护;必须加快启动大数据标准体系的研究和对接工作,为推进大数据应用奠定基础
近日通过的《关于促进大数据发展的行动纲要》,标志着大数据在我国的发展与应用已经上升到国家战略层面。笔者认为,要使《行动纲要》中的内容尽快成为促进大数据发展和推进大数据应用的实际行动,需要从以下3个方面入手。
首先,在政府序列中明确大数据的牵头责任单位,并要求政府各主管部门制定大数据发展规划。说到底,大数据主要来源于部门行政记录数据、企业单位生产经营数据和互联网上生成的数据。目前,工信部负责信息化建设,网信办负责互联网管理,发改委负责发展规划的制定,统计局拥有大量动态统计数据,诸多政府部门如海关、工商、税务、质监等部门都拥有基于自身管理记录产生的数据。因此,这就需要明确一个牵头单位,负责协调各部门的具体职责与分工,制定和执行统一的发展规划,把握大数据应用在整体上及各个领域的推进情况;同时,也需要各政府职能部门依据大数据发展与应用大势,结合本领域的业务特点,制定大数据在本领域的详细发展与应用规划。
其次,积极推动相关法律法规的制定与完善,推动和促进数据的开放与国家秘密、个人隐私的保护。也就是说,应在积极开展调研、广泛征求各方意见的基础上,制定完善与大数据发展应用有关的法律法规,兼顾两个方面的工作。
一方面,要以立法形式要求各级政府部门和大数据企业开放并提供数据。目前,除政府统计部门以官网、微博、微信、年鉴、发布会等形式定期发布详尽的分组数据外,多数政府职能部门只是适时提供一些综合及简单分组数据,各大数据企业也仅仅会发布一些成型的大数据产品。因此,应通过完善立法,要求各政府部门实现信息共享,并定期发布详尽分组数据;要求大数据企业依法向政府统计部门提供生产经营中形成的基础数据,包括第三方数据。
另一方面,要通过立法和执法,严格保护企业秘密和公民隐私。具体来说,就是要明确保护的内容和范围,制定违反规定、泄露企业秘密和公民隐私的处罚条款。无论是政府机关还是大数据企业,违反规定都要依法严肃查处,通过严格执法震慑违法行为。
再次,加快启动大数据标准体系的研究和对接工作,为推进大数据应用奠定基础。大数据蕴含着大价值,但无论是政府部门的行政记录,还是企业单位电子化的生产经营记录,不同的大数据产品依照的都是本部门或本单位的标准。分类不一致,编码不一致,口径范围不一致,影响着大数据的应用与整合。因此,必须尽快启动和加强大数据标准体系的研究,由相关部门牵头,以现行标准为基础,充分考虑大数据的特点,统一研究并制定大数据代码标准、分类标准、技术标准。在应用大数据时,特别是对那些可以成为政府统计数据来源第二渠道的大数据,建议在分析出其与统一标准差异的基础上,实现向统一标准的转换。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25