
大数据和物联网将如何改变邮政服务
你是否同时拥有“物联网、数据策略与分析,以及邮政服务的运作、设施、产品和服务方面的专业技能和关键知识”?是的话,你可以试试向美国邮政署(United States Postal Service)投标,他们正在寻找合适的供应商来帮助他们实现“邮政物联网项目”。如果你根本不知道我在说什么,下面做了扼要介绍。
让我们从那些显而易见的事说起:很少有事物能像邮政服务那样遍布各地,无处不在。另一点或许不那么明显:很少有人收集了如此大量的数据。邮政运营商从他们庞大的实体网络中收集了海量信息,例如,美国邮政署会对每个邮件和包裹扫描多达11次,这意味着每年共扫描1.7万亿次。其庞大的超级计算机数据中心已经是美国最大的数据中心之一。
美国邮政署监察长办公室在今年5月发布的一份报告中写道,在未来,“数量不断增长的可操作数据的汇集,通过无所不在的网络连接整合和分享这些数据,以及分析学的快速发展,以上这三点的结合可能会为邮政运营商打开一个充满机遇的新世界——邮政物联网”。
邮政网络(邮车、邮筒、邮件和包裹、分拣中心等等)可能会配备低成本传感器,这将极大地增强邮政运营商收集有价值数据的能力。这个庞大的新数据来源可以帮助邮政服务提高运营能力和改善客户服务,创造新的产品和服务,并为更有效率的决策过程提供支持。专家们指出,“邮政物联网”还将对其他邻近的非邮政行业产生积极的溢出效应,因为邮政服务自己收集或者找人代为收集的信息对其他人也同样有用。
例如,让邮车配备传感器可以降低车队的维护费,优化行车路线,报告移动和无线网络的覆盖盲点,监视环境状况,探测有害的化学物质和污染。这些传感器收集的数据还能够变成邮政服务新资产的基础,为政府机构以及其他上市和私人企业提供服务。例如,可以把加速计放在邮车上,用来评估道路状况和探测路面坑洞,然后将收集到的数据出售给市政局。
邮政大数据甚至还能帮助零售商进行新门店选址。这在德国已经有人付诸实践:DHL向企业提供了一款付费使用的在线地理营销工具,名叫Geovista。该工具将来自于德国邮政的地理数据、来自于其他机构的社会人口和住房数据以及有关消费模式的统计数据结合起来。这些信息可以帮助营销人员进行新店铺选址,并为销售预测做好准备。开放数据还能为第三方开发者创造机会。法国邮政局正与创新软件公司合作,希望利用其邮编、邮局位置、地址文件变动等数据库来推出新服务。
在终端用户方面,邮政大数据可以促进形成以消费者为中心的新型投递服务。报告的作者们引用了SoPost平台的例子。在英国,该平台让人们把Facebook和Twitter账户作为邮寄礼品或者产品小样的地址,而无需写明实际的详细收货地址。在瑞典,DHL正在测试“众包快递”,让个人也有机会把装着网购产品的包裹直接送到其他终端消费者的面前。通过一款手机应用,这项名叫MyWays的服务把那些需要灵活选择收货时间的人和那些愿意顺路运送包裹以便赚点小钱的人联系起来。
考虑到上述以及其他的好处,监察长办公室在6月17日发布招标通告,希望找到一家公司,帮助他们充分利用邮政服务产生的所有数据,并想出新的方法来围绕这些数据构建创新式服务。投标者有希望赢得10万美元合同。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14