京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:用一次就扔?太浪费!
大数据是一个非常大的话题。大数据现在是非常流行的,每个人都在讨论大数据。看起来好像每一个人在全世界范围内都在做大数据,很显然我们现在是在研究数据,而且收集的过程基本上每个月都是和大数据相关的。当然我们现在正在做的就是关于大数据方面的工作。
我相信像这样的一种观点基本上是存在错误性的,讲一下逻辑。我们之所以这么说是因为数据是非常大的,我们现在所介入的就是大数据,看起来所有的东西都是非常重要的,是这样的。我们的机器和服务在短期是非常重要的,对于一些小的企业,刚刚开始的企业来讲尤其如此,我们更需要的是可持续性。从未来的不断发展来讲,会逐渐的在电子商务中来消融。
大数据是不是最特别的,不需要担心。大数据如果是特别的,一定是需要一些不同的或者更好的一些做法,我们现在做的事情尤其如此。从商业的角度来讲,这种区别是在我们发现数据的价值当中体现出来的。这也是为什么我建议我们应该重新的研究大数据的含义,在这里给大家解释一下。
数据永远对于业务的功能,对于市场来讲是非常关键的,它使得我们能够实现生产的有效性,并且可以实现市场的一些交易,我们的产品和服务这样才能找到买家。但是数据总会被看为二级的或者次级的东西,是我们业务车轮旋转的润滑剂。从商业的角度来讲肯定是非常重要的,这种现象正在不断的发生变化,数据已经转变为主要的价值来源。这种资源本身就好像是劳动力和资本一样,在数据时代,最好的公司使用数据使得公司的运转效率更加的高。从大数据时代来讲,公司将会逐渐的转向数据业务,从他们收集的数据当中直接获得收益。
第二点是更加基本性的改变。到目前为止,我们在数据的收集和分析当中都是为了一些主要的业务,比如关于收费处理的数据。用户的一些数据是为了能够针对产品进行分析,保险的数据是为了能够给好的进行价格的定位和风险的管理。这些流程中的数据是为了能够进一步的改进生产的流程。这当然是让我们可以理解的,数据是非常有力量的。
比如美国的一些零售公司,他们可能会在整个的库存设备当中来使用数据,不光要了解卖出去的产品是什么,而且什么时候进行销售,在哪个商店销售的。同时它还可以来实现整个沃尔玛数据的产品在购买和销售过程中所有的管理,同时对于供应商来讲它可以更好的在沃尔玛进行货架的租赁。这样让沃尔玛成为更加有效的运营商,并且对于沃尔玛来讲它的规模、效率和力量就更大。
沃尔玛的库存数据能够满足他的最终的目的,那就是让这些数据更好的长期进行库存的管理。在大数据的时代,我们将会意识到最重要的或者真实的数据的力量,不光是 要满足这种主要的目的,而且我们从数据当中获得的价值,不光是第一手使用了,而且第一手使用只是冰山一角,只是数据总体价值很小的一部分。
在大数据的时代,我们会意识到数据的价值是存在它的潜力当中的,并且我们对数据的使用可以进一步的加强。数据它是非常有价值的。如果我们第一次使用就把它扔掉太可惜了,这相当于我们把一瓶非常贵的酒只喝一口就扔掉一样那么可惜。
许多大数据公司现在在已经发掘二级数据当中的成功意义,.com我们使用的是定价的软件和 数据,能够更好的分析产品的成本。像亚马逊这样的公司,他们可以在互动或者交易当中使用大数据,更好的在交易当中获益。谷歌已经使用了30亿美元的分析大数据,不光是为了能够进行研究数据的交付,同时能建立全世界最好的数据交付系统。
UPS公司也在使用大数据能够管理6万多辆物流车辆,进行车辆车队的管理。同时能够了解整个的车辆在路上的路况情况,了解到这些车主什么时候左转,什么时候右转。大数据也可以用在传感器中,了解飞机引擎在整个生命周期的表现,同时能够进行预测性的维护。在引擎坏掉之前,就可以进行修理和更替。同时能够更好的从现在的业务当中逐渐向涡轮或者轮片的业务来转变,不光能够销售引擎,同时能够提前预测销售。
谷歌和苹果他们可以使用这种方式进行商业点的管理,给他们的智能手机实现具体的定位的功能。就算是在GPS不能工作的时候也能够实现。美国的一家公司进行几百、几千个个人商业信用报告的公司,他们也可以使用这样的数据来看一个人他是不是能够及时的服药,最终还可以预测与服药依从性相关的数据。美国的零售公司也能够将他的交易数据进行预测一位女性的客户是不是怀孕了,他们通过观察用户购买的习惯进行定位。
我们从二手的数据当中获得非常大量的收益,使用的方式可能是你没有想到的。很少有人在真正的获得大数据一次使用之后进行进一步的分析。 我们进一步看一下谷歌他们所提供的服务,也就是再捕捉服务。再捕捉服务可以看作是几个小的数字,但是我们可以在全世界引擎的服务当中嵌入很多关键词。通过关键词的分析能够分析出来到底嵌入的是人还是机器人。再捕捉的服务是非常有价值的,它可以分析出来这个用户他到底是不是真正的人类。
这个数据代表的是什么?你可能会从好几本书当中进行扫描,这也是谷歌书籍扫描技术的一部分。通过这种方式还可以看一下这些数字的再次嵌入,是不是可以进入非常好的免费的页面检查。在10秒钟的使用当中,就可以进行20多个再捕捉的服务。通过这种方式我们可以一天实现非常高的效率。
如果把它转向市场的话,这些数据模糊性的查询可能成本在2.5亿美元左右,通过这种服务谷歌就可以获得10亿美元的收入。通过二次数据价值的开发就可以实现。这就是大数据的价值所在,也是为什么大数据如果做得对的话就可以给我们带来非常大的价值,对于我们的商业,特别是你能理解到大数据价值的话。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30