
大数据人工智能给金融带来什么
当你在乐此不疲的调戏siri,期待siri会贴心提示附近餐馆、维修厂、医院甚至婚姻中介所时;
当你多次前往赌场或是高级消费场所,总能在不经意间享受到令自己意外的满意服务时;
当你每年收到各类年度账单忙着一边互相分享,一边感慨时光匆匆,原来穷都是别人装出来的时候……
你是否偶尔细思极恐?是的,众所周知,大数据时代,我们已没有秘密。但与此同时,我们正享受着这个时代所特有的便捷与服务,并为之惊叹。而在金融界,大数据也一直在有力的推进金融科技的发展。
2017年6月25日,在万得&创业营——创业创新移动课堂上,万得资讯的大当家陆风董事长为我们分享了金融大数据的创新与应用。
从上个世纪90年代,互联网金融随着计算机的发展而产生,十几年后,金融科技热潮的兴起,又标志着以流量为王的互联网金融跨入数据金融时代。如今伴随着Fintech的逐渐发展,日后智慧金融也必将成为趋势。
数据是金融的核心
人们通过对底层数据进行收集和存储,加以信息整合,并利用机器学习、数据沙箱等知识发现,从而进一步做出智慧决策。在与日剧增的数据量基础上,最终量变会导致质变,从而使机器变得更加智能。故将许多问题变为数据问题,从数据的维度去看,能找到正确答案。
因此许多人认为未来的公司本质都是数据公司。市场的竞争,也会从技术竞争演变成数据竞争,各公司的商业策略和产品策略,都将会围绕着获取数据开展。也因此在2011年,万得的slogan从2004年提出的“金融就是数据”改为了“数据就是未来”。
区块链将重塑传统互联网底层基础
区块链自2016年突然在国内爆火,很多国内金融企业乃至非金融企业都开始关注这一被认为是下一代互联网技术的黑科技。截止2017年4月底,全球总共455家区块链公司累计获得融资19.47亿美元,在获投公司数量上中国共有61家,位列全球第二。
区块链通过去中心化技术,能够在大数据的基础上完成算法背书、实现全球互信这个巨大的进步。而金融服务是区块链技术的一个重要典型应用领域,由于其所拥有的高度可靠、流程简化、交易可追踪、节约成本、降低操作风险以及改善数据质量等特征,使其具备了重构金融业基础架构的潜力,能够解决行业发展的诸多痛点。相信未来十年,区块链将在亚洲市场得到极大发展。
人工智能才是Fintech的最终应用
提到人工智能,你可能觉得很眼熟。在最近朋友圈引起热转的张磊人大演讲:《选择做时间的朋友,Think big,Think long》和马云:《错过中国,你就错过了未来!美国演讲实录》中均有提到未来人工智能的发展。
比尔盖茨也曾说过假如他今天要重新出发,寻找同样能给世界带来重大影响的机会,他会考虑三个领域,第一个便是人工智能。其实早在1956 年,人工智能已被提出,但直到2012年后,尤其近两年人工智能(AI)才开始爆发。
AlphaGo在围棋领域大杀四方战胜人类
Aidam与多名高考状元同台PK震动整个教育行业
某翻译器号称让同声传译这个职业消亡
……
AI正一次又一次的打破疆界,让世人惊讶。而在金融领域,AI的发展也推动了投资策略自动化和智能化的进程。随着机器深度学习能力的发展,人工智能时代下的投资发展也即将踏上一个新的台阶。Wind资讯在人工智能方面的探索也从未停下步伐,从去年发起了量化讲坛系列课程,截止目前已举办了近30场,受到金融行业业内人士的广泛关注与积极参与。
目前已经有百亿级基金在用AI做投资,甚至超越了顶级分析师。于是,很多人会问,会不会有一天,人工智能替代了分析师呢?
不仅仅是分析师,近两年,十几家世界知名银行都宣布了裁员计划,传统业务的从业人员正在或即将面临人工智能去中介化的巨大挑战,毕竟AI有快速的学习能力,严谨的逻辑推理能力,以及海量精准的信息处理能力,再加上不动情感的稳定持续的工作能力,这就决定了它能够高效而精准的执行数据收集和整理工作。
从某些维度去对比分析,大约也能体会那时日媒的尴尬吧。
“以后所有用眼睛做的事情都可能会被人工智能所取代” 陆风说,在未来十年,由于人工智能自动化软件的发展,金融行业可能有三分之一的雇员将面临失业。
尽管如此,人工智能毕竟只是执行的工具,如何善用这些工具让自己的价值再度被彰显,是大家都要思考的课题。
最后,陆风表示区块链、人工智能等技术的蓝海市场也未必是表面的阳光明媚,仍然存在诸多风险点,比如技术滥用所带来的财产安全、隐私安全、职业诚信、职务犯罪、监管边界等等,未来仍需大家一起努力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28