
SPSS中的T检验
1.单样本T检验(One-Sample T Test)
单样本T检验主要用于样本均数和已知总体均数的比较,还可以计算相应的描述性统计量及样本均数和总体均数之差的95%可信区间。
如果Sig(P)>0.05,差异没有显著性,可以认为抽样的均数与总体均数相同;0.01<Sig(P)<0.05,差异较显著,可以认为抽样的均数与总体均数不相同;Sig(P)<0.01,差异非常显著,可以认为抽样的均数与总体不相同。
如果求得的可信区间没有包括0,亦可说明两者间的差异有显著性意义。
2.配对样本T检验(Paired-Samples T Test)
本过程用于配对计量资料的比较,检验配对样本差值的总体均数与0的差异有无显著性差异,以及配对样本是否相关。结果输出以双侧概率及95%可信区间表示。
如积矩相关系数r=0.782(P=0.008),可以推断,该变量在处理前后正相关。
如配对t检验,t=5.273,v=9,P=0.001(双侧), 差异有显著性意义。
如差值的95%可信区间不包括0,同样说明差异有显著性意义。
1.独立样本T检验(Independent-Samples T Test)
独立样本T检验即两样本均数比较的t检验(或两样本t检验),用来检验两个独立样本的总体均数是否有显著性差异。
以两种药(甲,乙)的疗效为例,先计算两种疗效的差值。差值为反应变量(Test Variable),药物为分组变量(Grouping Variable)。
结果分析:Levene's Test for Equality of Variences:Levene 方差齐性检验,先求得各观察值与其所在组的均值之差的绝对值,然后将绝对值按分组变量做方差分析,所得F值即Leven F统计量。若P>0.05,可认为方差齐次性。该方法在非正态分布数据情形下较稳健。
Equal variances assumed:方差齐同条件下的t检验结果。如果P>0.05,差异无显著性意义,认为甲乙两药的疗效差异无显著性意义。
Equal variances assumed:方差不齐条件下的t检验结果。
2.单向方差分析(One-way ANOVA)
单向方差分析过程用于完全随机设计资料的多个样本均数比较和样本均数间的多重比较,即可进行多个处理组与一个对照组的比较。
如分析某湖中不同季节中氯化物含量的变化。季节为分类变量(Factor),氯化物为因变量(Dependent list).Post Hoc...:各组均数的多重比较。
结果分析:方差分析(Anova表),如果P<0.05,差异显著,认为不同季节中的湖水中的氯化物含量不同。
LSD检验结果:可以看出来春夏秋冬四季之间氯化物含量差异是由有显著性变化。
SNK检验和LSD检验一样可以通过P值看出来各个季节氯化物的含量是否有显著性变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01