
不只是大数据,银谷要把最基础的事情做实
要找银行借钱,得讲信用,而信用需要时间的考验。没有信用,有抵押物或担保人也行。银行家不做无保障的贷款。融资最大的障碍就是抵押物。国企央企找银行借钱的终极抵押物,就是国家信用。国家信用的价值无限大,所以,国企央企总能轻松地以低利率借到钱。
小微企业主、个体工商户和工薪阶层之所以融资难,是因为它们没有可靠的抵押物和担保人。
巴菲特说:“我越来越看重的,是那些无形的东西。”巴菲特做投资判断,越来越看重企业的商誉。银行做贷款也是这样。
可口可乐的老板有一句名言:全世界的可乐工厂一夜之间都烧掉了,但是,第二天照样有人来给我们供货,银行照样来给我们贷款,客户还照样来订单。能烧的都烧掉之后,剩下的那个烧不掉的东西——品牌价值,就是商誉。
抵押物、担保人和商誉可用于争取银行贷款,而这些却又是实现“普惠金融”的门槛。
中国人往往更看重人情和熟人(熟客)间的信任关系。地产界大佬冯仑曾说过:“你有多少钱,不是看你银行账上有多少钱,而是你需要用钱的时候,这世界上有多少人愿意借多少钱给你?”
银行融资是“借”的逻辑,冯仑的融资逻辑是“信用变现”,后者更具有“普惠性质”,冯仑的话无意中已接近互联网金融的核心精神。
银行信用记录的形成过程非常单调,就是你贷过款才有信用记录,否则没有。在美国人的消费开支中有80%以上是用信用卡支付的,这大多是出于累积信用的考虑。哪怕你是企业主,需要更多借款,比如一次借个30万50万,银行家也希望你是从一个小的金额累积信用,这样银行可以通过信用累积过程,观察你这个人的各种行为数据。
互联网金融(以P2P为主)逐渐兴起之后,欧美金融领域一些“新思维”开始对中国同行产生影响。很多P2P平台相信“用数据说话”,认为“在大数据的监视下,人们在互联网上的一切行为、身份甚至个性都无处遁形。”比如,你登录网站的时间总是在半夜,说明你白天可能是个无业游民;你在P2P平台借款填写表格的时间过长且总是删删改改,你就可能有编造信息的嫌疑……
《中国P2P借贷服务行业白皮书》认为,大数据征信使用的数据涵盖传统的征信数据、消费/财务数据、身份数据、社交/经营数据,乃至日常活动数据、特定/不特定场景下的行为数据,“一切数据皆为信用数据”。
可是,这样“数据大杂烩+逻辑判断”是否真的有效?不同来源的数据之间有冲突和矛盾如何处理?
就算这种“大数据”逻辑真的有效,更多是在否定一个人的信用。真正好的P2P平台,更关注如何帮助借款人建立信用。
比如,银谷P2P平台就是一个积累了海量用户数据的大型平台,能够运用人脸识别技术和大数据挖掘技术,减少繁琐而昂贵的尽职调查,将信用风险确定为几个指标,然而批量化、专业化操作,业务速度得以加快。
可是,在银谷看来,技术、数据与效率对于P2P平台固然重要,但并非其核心竞争力。服务才是这个世界上最昂贵的产品。银谷平台真正努力的方向是做一家服务一流、有情有义的P2P平台,银谷要帮助真正有信用的人“信用变现”。
银谷创立8年来,做的最重要的一件事就是建立了自己的信用管理系统。这个过程是煎熬的,银谷需要投入大量的时间和资金,对用户数据进行科学积累和反复修正,为了弥补“大数据”技术的不足,银谷还会用最辛苦、最传统的信用评估方式来做补充,力求把最基础的事情做实。
银谷平台的服务对象主要是小微企业主、个体工商户、公务员、事业单位高收入人员等,不做50万元以上的“大额”借款,不做“二八法则”里20%的头部客户,而是以互联网+的方式,服务“长尾”客户。基于广泛的信用和信赖,银谷平台的“熟人用户”规模不断扩大,成本的优势会逐渐显现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16