
不只是大数据,银谷要把最基础的事情做实
要找银行借钱,得讲信用,而信用需要时间的考验。没有信用,有抵押物或担保人也行。银行家不做无保障的贷款。融资最大的障碍就是抵押物。国企央企找银行借钱的终极抵押物,就是国家信用。国家信用的价值无限大,所以,国企央企总能轻松地以低利率借到钱。
小微企业主、个体工商户和工薪阶层之所以融资难,是因为它们没有可靠的抵押物和担保人。
巴菲特说:“我越来越看重的,是那些无形的东西。”巴菲特做投资判断,越来越看重企业的商誉。银行做贷款也是这样。
可口可乐的老板有一句名言:全世界的可乐工厂一夜之间都烧掉了,但是,第二天照样有人来给我们供货,银行照样来给我们贷款,客户还照样来订单。能烧的都烧掉之后,剩下的那个烧不掉的东西——品牌价值,就是商誉。
抵押物、担保人和商誉可用于争取银行贷款,而这些却又是实现“普惠金融”的门槛。
中国人往往更看重人情和熟人(熟客)间的信任关系。地产界大佬冯仑曾说过:“你有多少钱,不是看你银行账上有多少钱,而是你需要用钱的时候,这世界上有多少人愿意借多少钱给你?”
银行融资是“借”的逻辑,冯仑的融资逻辑是“信用变现”,后者更具有“普惠性质”,冯仑的话无意中已接近互联网金融的核心精神。
银行信用记录的形成过程非常单调,就是你贷过款才有信用记录,否则没有。在美国人的消费开支中有80%以上是用信用卡支付的,这大多是出于累积信用的考虑。哪怕你是企业主,需要更多借款,比如一次借个30万50万,银行家也希望你是从一个小的金额累积信用,这样银行可以通过信用累积过程,观察你这个人的各种行为数据。
互联网金融(以P2P为主)逐渐兴起之后,欧美金融领域一些“新思维”开始对中国同行产生影响。很多P2P平台相信“用数据说话”,认为“在大数据的监视下,人们在互联网上的一切行为、身份甚至个性都无处遁形。”比如,你登录网站的时间总是在半夜,说明你白天可能是个无业游民;你在P2P平台借款填写表格的时间过长且总是删删改改,你就可能有编造信息的嫌疑……
《中国P2P借贷服务行业白皮书》认为,大数据征信使用的数据涵盖传统的征信数据、消费/财务数据、身份数据、社交/经营数据,乃至日常活动数据、特定/不特定场景下的行为数据,“一切数据皆为信用数据”。
可是,这样“数据大杂烩+逻辑判断”是否真的有效?不同来源的数据之间有冲突和矛盾如何处理?
就算这种“大数据”逻辑真的有效,更多是在否定一个人的信用。真正好的P2P平台,更关注如何帮助借款人建立信用。
比如,银谷P2P平台就是一个积累了海量用户数据的大型平台,能够运用人脸识别技术和大数据挖掘技术,减少繁琐而昂贵的尽职调查,将信用风险确定为几个指标,然而批量化、专业化操作,业务速度得以加快。
可是,在银谷看来,技术、数据与效率对于P2P平台固然重要,但并非其核心竞争力。服务才是这个世界上最昂贵的产品。银谷平台真正努力的方向是做一家服务一流、有情有义的P2P平台,银谷要帮助真正有信用的人“信用变现”。
银谷创立8年来,做的最重要的一件事就是建立了自己的信用管理系统。这个过程是煎熬的,银谷需要投入大量的时间和资金,对用户数据进行科学积累和反复修正,为了弥补“大数据”技术的不足,银谷还会用最辛苦、最传统的信用评估方式来做补充,力求把最基础的事情做实。
银谷平台的服务对象主要是小微企业主、个体工商户、公务员、事业单位高收入人员等,不做50万元以上的“大额”借款,不做“二八法则”里20%的头部客户,而是以互联网+的方式,服务“长尾”客户。基于广泛的信用和信赖,银谷平台的“熟人用户”规模不断扩大,成本的优势会逐渐显现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29