京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 数据该如何保护
随着数据发掘的不断深入和在各行业应用的不断推进,大数据安全的“脆弱性”逐渐凸显,国内外数据泄露事件频发,用户隐私受到极大挑战。而且在大数据环境下隐私泄露的危险,不仅仅在于泄露本身,还在于基于数据对下一步行动的预测和判断,因此大数据时代的隐私保护俨然成为大数据应用发展的一项重要课题。
目前隐私数据泄露的主要途径包括以下两个方面:非交互式泄露:主要指在信息系统内部的隐私泄露,多发生在业务流程中有多个节点可以对数据进行访问;交互式泄露:主要是针对信息使用传递过程中发生的泄露,可能发生在区域性平台数据交互等环节,虽然有基于角色访问控制的技术,但是在权限分级、设定、信息分级等方面有较大的难度。
面对隐私数据泄露的隐患,很多情况下,人们认为只要对数据进行匿名处理或者对重要字段进行保护,个人隐私就是安全的,但是大量的事实已经证明,可以通过收集其他周边信息对具体个人进行定位和辨识,下面就结合目前已有的技术手段对隐私保护进行分析。
1.信息加密与隐私保护
在很多信息管理软件中会应用哈希(Hash)和加密(Encrypt)进行数据保护,哈希是将目标对象转换成具有相同长度的、不可逆的杂凑字符串(或叫作信息摘要),而加密是将目标文本转换成具有相同长度的,可逆的密文。在被保护数据仅仅用作比较验证,以后不需要还原为明文形式时使用哈希,如果被保护数据在以后需要被还原为明文时,则使用加密。这两种方法均可以保证在数据库被非法访问的情况下,隐私或敏感数据不被非法访问者直接获取,比如数据库管理员的口令在经过哈希或加密后,使入侵者无法获得口令明文,也无法拥有对数据库数据的查看权限。
2.标识隐私匿名保护
标识匿名隐私保护,主要都是采取在保证数据有效性的前提下损失一些数据属性,来保证数据的安全性,通常采用概化和有损连接的方式,同传统泛化/隐匿方法相比,其在信息损失量和时间效率上具有明显的优势,在数据发布中删除部分身份标识信息,然后对准标识数据进行处理,当然任何基于隐私保护的数据发布方法都会有不同程度的损失,对于发布后的重构数据不可能,也不应该恢复到原始数据,所以未来在兼顾可用性与安全性的前提下,需要一种新的算法来找到可用与安全的折中点。
3.数据的分级保护制度
不同的信息在隐私保护中具有不同的权重,如果对所有信息都采用高级别的保护,会影响实际运作的效率,同时也是对资源的浪费,但如果只对核心信息进行保护也会通过关联产生隐私泄露的隐患,所以需要建立一套数据的分级制度,针对不同级别的信息采用不同的保护措施,但是在不同行业中,由于涉及不同系统和运作方式,制定一套完善的分级制度还涉及以下的访问权限控制问题。
4.基于访问控制的隐私保护
系统中往往参与的人员节点越多,导致潜在泄露的点也越多,访问控制技术可以对不同人员设置不同权限来限制其访问的内容,这其实也包括上面提到的数据分级问题,目前大部分的访问控制技术均是基于角色的访问控制,能很好地控制角色能够访问的内容及相应操作,但是规则的设置与权限的分级实现起来比较复杂,无法通过统一的规则设置来进行统一的授权,许多情况下需要对特定行业角色的特殊情况进行单独设置,不便于整体管理和调整。需要进一步对规则在各行业的标准体系进行深入研究。
通过对上面不同技术手段的分析可以看出,每项技术虽然各具特点,但在应用和性能上都有一定的局限,一定程度上也缺乏标准制度的保障。目前在大数据领域针对隐私保护问题尚未建立起一套完整的保护体系和标准,包括数据的存储环节、访问环节、应用环节在内尚未形成系统性的保护,未来在构建隐私保护体系时,在技术的基础上,需要进一步制定出相应切实可行的制度来规范人们的行为以及技术手段的顺利执行。所以隐私保护离不开法律政策的支撑,也惟有通过技术手段和法规制度相结合,才能实现大数据领域对“不能说的秘密”真正的保护。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08