京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的小算盘
这两年大数据市场发展得红红火火,业界普遍看好其应用前景。精英们,专家们每每提及大数据,必然带上数据经济、物联网,人工智能等一长串金光闪耀的名词作为注脚,常把我这种小从业者侃的热血沸腾,大有“世界是我们的,就是我们的,最终还是我们的”的感觉。不过热血总是会平复的,冷静下来想想,能够在大数据浪潮中兴风作浪的只是少数有资源、有技术、有市场的巨头们,对于面临生存发展压力的众多小从业者来说,多美好的未来都太遥远,与其垂涎行业巨头们的大布局,不如静下心打打自己的小算盘。
跟随行业的脚步,向前迈进
大数据市场的快速发展会创造很多的市场机会,但也带来巨大的风险。大企业,乃至行业巨头都难保自己不会衰落,更何况对市场风险抵御能力更弱的小从业者。认清并跟随行业发展大趋势,无疑能够大大提升小从业者们的生存和发展能力。
随着在各行业中不断应用,大数据技术得到广泛的认可,进入了理性发展阶段。16年以来,各种社会组织对大数据的态度发生了改变,从一种潜力巨大的新技术变为帮助自己适应互联网时代的强力工具,大数据市场相应的出现了新动向:
业务需要驱动大数据建设。随着对大数据了解的不断加深,市场关注点变为大数据的实际应用价值,客户更加关心如何利用大数据,而不再是如何建设。大数据企业使用数据、挖掘数据的能力对其发展市场越来越重要。单纯技术驱动的大数据企业,特别是专注于大数据平台建设的,将会在在市场变化中遇到更多的挑战。
全量数据分析。身处复杂,异构环境中的企业不再希望仅为一个数据源(Hadoop)采用孤立的BI访问点。他们需要的答案被埋没在一大堆数据源中,从记录系统到云端,再到来自Hadoop和非Hadoop源的结构化和非结构化数据。企业会更加趋向于将自己的所有数据纳入数据管理分析范围。不依赖于数据源的平台将会受到欢迎,而专为Hadoop而设计的平台和未能跨应用部署的平台将受到冷遇。数据湖概念的兴起就是一个明显的佐证。
基于大数据的机器学习。随着大数据分析能力不断增强,越来越多的企业开始投入于机器学习,并从中获益。企业可以通过机器学习算法识别潜在客户,或识别即将流失的客户,或识别营销推广中作弊的渠道,或及时发现关键KPI下跌的原因等。
结合自身情况和行业发展,不断调整,找到最适合自己的发展方向和策略,小从业者也可以顺风顺水,说不定有一天就站到大数据的风口浪尖。
把握发展的契机,阔步前行
大有大的难处,小有小的优点。相比于行业巨头和大企业,灵活快速的满足客户要求是小从业者的最大优势。像其他新技术一样,大数据在落地的过程中会遇到很多的问题,这是新兴市场给所有从业者的礼物,也是小从业者快速发展的契机。
大数据真正在各行业落地的时间并不长,以往企业更多的是在验证技术可行性,直到16年才开始考虑围绕大数据构建IT体系,一些比较普遍的问题受到了各方面的关注:
打通数据孤岛仍是企业关注重点。在很多企业尤其是大型企业中,数据常常散落在不同部门,而且这些数据存储于不同的数据仓库,不同部门的数据技术也有可能不同,导致企业内部数据无法打通。从自由模式的JSON到嵌入式的数据库(如关系数据库和非关系数据库),到非平面数据(如Avro,Parquet,XML),数据格式正在成倍增长,连接器变得至关重要,它将不同格式的数据变成统一的表达,让不同格式的数据之间实现互通。为零散的、不同的资源提供即时连接的能力,将成为评估一个大数据系统能力的重要方面。
“自助服务”工具。企业数据用户(往往是业务、产品、营销负责人等非大数据专业人士)在实际运用大数据的时候,更关注的是大数据的产品在哪些方面可以直接帮助改善自身业务,不需要关注大数据产品内部各个环节的技术细节。大数据在落地的过程中,需要解决大数据能力产品化的问题,帮助非专业人员使用,比如:自助服务的大数据分析工具、数据管理工具等。我们将看到更多企业意识到自助工具的重要性,以及对其迫切的需求。
智能BI。智能化涵盖的内容很多,包括人工智能等等,但对于资源、技术都比较匮乏的大多数小从业者而言,考虑企业用户对BI系统的智能化期待更具现实意义。企业最希望利用大数据技术实现精细化运营,发现新的发展和提升契机。这将推进智能BI的发展,帮助企业更好地理解和满足客户需求和潜在需求,更好地应用在业务运营智能监控、精细化企业运营、客户生命周期管理、精细化营销、经营分析和战略分析等方面。
大数据在各行业的落实,是数据技术同行业知识的结合,是一个长期的持续提升过程。大数据企业需要不断的观察、分析市场动态,保持敏锐的市场触觉,不断调整自身抓住每个机会壮大自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27