
大数据的小算盘
这两年大数据市场发展得红红火火,业界普遍看好其应用前景。精英们,专家们每每提及大数据,必然带上数据经济、物联网,人工智能等一长串金光闪耀的名词作为注脚,常把我这种小从业者侃的热血沸腾,大有“世界是我们的,就是我们的,最终还是我们的”的感觉。不过热血总是会平复的,冷静下来想想,能够在大数据浪潮中兴风作浪的只是少数有资源、有技术、有市场的巨头们,对于面临生存发展压力的众多小从业者来说,多美好的未来都太遥远,与其垂涎行业巨头们的大布局,不如静下心打打自己的小算盘。
跟随行业的脚步,向前迈进
大数据市场的快速发展会创造很多的市场机会,但也带来巨大的风险。大企业,乃至行业巨头都难保自己不会衰落,更何况对市场风险抵御能力更弱的小从业者。认清并跟随行业发展大趋势,无疑能够大大提升小从业者们的生存和发展能力。
随着在各行业中不断应用,大数据技术得到广泛的认可,进入了理性发展阶段。16年以来,各种社会组织对大数据的态度发生了改变,从一种潜力巨大的新技术变为帮助自己适应互联网时代的强力工具,大数据市场相应的出现了新动向:
业务需要驱动大数据建设。随着对大数据了解的不断加深,市场关注点变为大数据的实际应用价值,客户更加关心如何利用大数据,而不再是如何建设。大数据企业使用数据、挖掘数据的能力对其发展市场越来越重要。单纯技术驱动的大数据企业,特别是专注于大数据平台建设的,将会在在市场变化中遇到更多的挑战。
全量数据分析。身处复杂,异构环境中的企业不再希望仅为一个数据源(Hadoop)采用孤立的BI访问点。他们需要的答案被埋没在一大堆数据源中,从记录系统到云端,再到来自Hadoop和非Hadoop源的结构化和非结构化数据。企业会更加趋向于将自己的所有数据纳入数据管理分析范围。不依赖于数据源的平台将会受到欢迎,而专为Hadoop而设计的平台和未能跨应用部署的平台将受到冷遇。数据湖概念的兴起就是一个明显的佐证。
基于大数据的机器学习。随着大数据分析能力不断增强,越来越多的企业开始投入于机器学习,并从中获益。企业可以通过机器学习算法识别潜在客户,或识别即将流失的客户,或识别营销推广中作弊的渠道,或及时发现关键KPI下跌的原因等。
结合自身情况和行业发展,不断调整,找到最适合自己的发展方向和策略,小从业者也可以顺风顺水,说不定有一天就站到大数据的风口浪尖。
把握发展的契机,阔步前行
大有大的难处,小有小的优点。相比于行业巨头和大企业,灵活快速的满足客户要求是小从业者的最大优势。像其他新技术一样,大数据在落地的过程中会遇到很多的问题,这是新兴市场给所有从业者的礼物,也是小从业者快速发展的契机。
大数据真正在各行业落地的时间并不长,以往企业更多的是在验证技术可行性,直到16年才开始考虑围绕大数据构建IT体系,一些比较普遍的问题受到了各方面的关注:
打通数据孤岛仍是企业关注重点。在很多企业尤其是大型企业中,数据常常散落在不同部门,而且这些数据存储于不同的数据仓库,不同部门的数据技术也有可能不同,导致企业内部数据无法打通。从自由模式的JSON到嵌入式的数据库(如关系数据库和非关系数据库),到非平面数据(如Avro,Parquet,XML),数据格式正在成倍增长,连接器变得至关重要,它将不同格式的数据变成统一的表达,让不同格式的数据之间实现互通。为零散的、不同的资源提供即时连接的能力,将成为评估一个大数据系统能力的重要方面。
“自助服务”工具。企业数据用户(往往是业务、产品、营销负责人等非大数据专业人士)在实际运用大数据的时候,更关注的是大数据的产品在哪些方面可以直接帮助改善自身业务,不需要关注大数据产品内部各个环节的技术细节。大数据在落地的过程中,需要解决大数据能力产品化的问题,帮助非专业人员使用,比如:自助服务的大数据分析工具、数据管理工具等。我们将看到更多企业意识到自助工具的重要性,以及对其迫切的需求。
智能BI。智能化涵盖的内容很多,包括人工智能等等,但对于资源、技术都比较匮乏的大多数小从业者而言,考虑企业用户对BI系统的智能化期待更具现实意义。企业最希望利用大数据技术实现精细化运营,发现新的发展和提升契机。这将推进智能BI的发展,帮助企业更好地理解和满足客户需求和潜在需求,更好地应用在业务运营智能监控、精细化企业运营、客户生命周期管理、精细化营销、经营分析和战略分析等方面。
大数据在各行业的落实,是数据技术同行业知识的结合,是一个长期的持续提升过程。大数据企业需要不断的观察、分析市场动态,保持敏锐的市场触觉,不断调整自身抓住每个机会壮大自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18