
大数据技术解读引领未来也须应对挑战
第1页:大数据技术的分类
大数据技术是在传统数据处理手段无法应对海量数据的实时需求的情况下,采用新的信息技术来应对大数据爆发进行数据处理的技术。大数据技术一般可以包括基础架构支持、数据采集、数据存储、数据计算和数据展现交互等。
大数据技术的分类
大数据技术涵盖的范围十分广阔。基础架构支持方面主要包括了支撑大数据处理的基础架构级数据中心管理、云计算平台、云存储设备及技术、网络技术、资源监控等技术。而为了处理数据,则需要有大规模物理资源的云数据中心和具备高效的调度管理功能的云计算平台的支撑。
数据采集技术方面包含了数据采集的手段和数据处理技术。一般来讲数据采集最基础的需要各类传感器和软硬件设施,然后需要进行ETL(采集、转换和加载)过程,对数据进行清洗、过滤、校验、转换等各种预处理,然后将有效的数据转换成为合适的格式及类型。而部分企业还需要为了应对多源异构的数据采集和存储访问设计数据总线,以便于企业各个应用和服务之间的数据交换及共享。
数据存储技术则是在经历了转换之后,针对海量数据进行存储归档。一般会采用分布式文件系统以及分布式数据库进行存储,将数据分布到多了存储点中,提供备份、安全、访问接口及协议等机制。而数据计算一般包括了数据查询、统计、分析、预测、挖掘、图谱处理、BI商业智能等各项相关技术,数据计算是数据处理的关键组成,也是大数据技术的核心部分。通过数据计算可以将大数据从数据转换为价值。
数据展现交互是与用户最贴近的一步。由于数据的最终使用者为用户,目标为给生产、运营、规划提供决策支持,因此一般会选择更为直观便捷的方式将数据的价值和内涵展示出来,让用户能够更有效的利用数据发挥价值。这一步出传统的报表和图形之外,当前最流行的手段莫过于可视化工具和人机交互等。
第2页:大数据技术面临的挑战
大数据技术面临的挑战
大数据技术在不断的发展过程中并非一帆风顺,其也遇到了不少挑战。在大数据采集方面,如在不损失数据本身价值的情况下尽可能的将数据集的量降低变小是个问题,在数据的清洗和去除过程中,如何有效的处理大数据,让其不损失价值,从一个平面的大数据中提取高附加价值的概念、理论以及知识才是关键。
大数据管理方面则需要面对多种不同类型的数据。由于当前数据以非结构化数据为主,而且这一趋势正在加强,如何面对分布、多态、异构的大数据进行管理,还需要更为有效和快捷的手段。
大数据存储方面,结构化数据尽管存储较为便捷,可是在海量数据的查询、统计和更新方面效率较低;如果面对非结构化数据,如视频、音频、文本、图片等,存储、检索都会存在一定困难,而且占用空间较大。对于半结构化数据,存储、分析都需要进行结构化数据转换,或者按照非结构化数据存储,难度较大而且不利于实时处理。数据计算方面,分布式计算与并行计算都可以提供有效的技术支持,但是如何提供有效的利用手段,开战大数据分析处理还需要进一步研究,而且在计算方面尽力“傻瓜式”开发的现在,如何找到切实可靠的理想结果也是一个重点。
大数据应用领域,应用大数据辅助具体行业的落地仍然有待提高,如何快速开展治安防控、警情研判及指挥决策,发掘行业信息资源价值,提高领域大数据的利用率都需要进一步的落地实施。
大数据技术的提高是显而易见的,但是大数据落地是一个重大课题。提高大数据技术,增强大数据应用还会是很长时间里的主旋律。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09