京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当医疗大数据遇到健康商业保险
近年来,受政策利好推动和消费者观念提升,健康险市场增速迅猛,潜力巨大。预计到 2020 年,商业健康险市场规模将达到 2万亿,成为现有医疗保障体系的有效补充。
作为商业健康险的供给侧,保险公司在发展商业健康险的过程中,为满足客户需求、提高自身运营及盈利能力,迫切需要在整合用户病历档案、简化客户理赔流程、建立高效的医疗保险审核系统。
整合用户的各项电子病历档案,需打破时空限制,为客户随时随地获得个性化精准医疗提供信息基础;简化客户理赔流程,享受便捷即时“快赔、直赔”,必须实现医院系统与保险核心系统直连,让客户就诊信息及理赔材料可直接同步至理赔系统;建立高效的医疗保险审核系统,对医疗数据融合提出需求,促进实现由事后审核向事前、事中审核延伸,强化风险控制,提高审核效率,确保医保管理更加科学合理。
保险公司要想实现以上目标,需要准确、全面地获取用户医疗数据。由于医院对医疗数据独占性,造成医疗服务信息不对称,医疗数据的获取成为难题。
险企亟需数据共享 信息孤岛无可回避
保险公司所需的医疗数据包括医嘱信息、手术信息、检查检验信息、影像资料、病历信息等。产生医疗数据的医院内部信息系统非常多,不同厂商、不同时间开发的软件产品,在技术架构、数据结构、存储方式等方面存在着巨大差异,形成了一个个数据孤岛。信息孤岛的存在导致医疗数据信息无法共享融合,如果用传统的接口方式打通所需的这些数据,需要各软件厂商提供数据接口支持,协调时间和接口费用都是不可承受之重,与保险公司获取医疗数据初衷背道而驰。
异构数据融合技术突破商业医保数据获取障碍 博为独有的异构数据融合技术,不改变原系统代码,无需软件厂家参与,独立抓取医院各软件系统(HIS、EMR、PACS、LIS等)中的临床数据,自动建立数据关联,输出结构化数据库,不仅简化了协调、缩短了工期、提高了安全,数据集成共享实施效率提高近百倍,成功突破保险公司获取医疗数据的障碍。该技术具有如下优势: 无障碍——无需原厂商支持,医疗数据采集融合环节简便畅通; 低成本——将人员协调成本、开发成本降到最低,有效减少项目交付时间; 零风险——非侵入式采集,无需开放原数据库,保证原系统安全; 高效率——与系统架构、代码无关,无需研发数据接口,直接采集。
当医疗大数据遇到健康商业保险,保险公司应用博为异构数据融合技术将获得显著成效将客户的医院临床数据直接采集融合,为保险理赔与医保监控提供数据支持医疗数据无延迟采集,改善了传统理赔周期长现状,客户可享受“直赔、快赔”,改善了客户理赔体验实现同一客户不同医院医疗数据融合,帮助保险公司整合用户的各项电子病历档案,弥补“互联网+时代新型医疗体系”服务模式的欠缺完善医疗保险审核系统,有效解决审核人员数量不足、专业能力不足和监管能力薄弱及审核标准不一的现状,强化风险控制。 未来,对于保险行业而言,医疗大数据不仅提升其控费能力,也有助于保险公司精确用户需求构图,优化服务流程,设计更贴合市场产品与服务,故掌握大数据采集核心技术即占领行业先机
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06