
大数据在金融和贸易中的作用
如今,无论人们所正在寻找的行业或业务,都很难将主要业务决策与大数据分开。当涉及到金融和贸易行业时,大数据的影响将会每天都能感受得到,这是一个事实。
影响金融和贸易行业的大数据三种方式
金融和交易一直依赖于强大的数据和准确的决策成功的投入。但当人们进入2017年,大数据正在从内而外彻底改变金融和贸易行业,将变得越来越清楚。
以下是一些需要详细讨论的特定主题。
1.技术分析
“金融技术分析是价格和价格行为的研究,使用图表作为主要工具。”高级市场战略家JeffreyFriedman指出,“现代技术分析包括价格的趋势性,价格折扣,所有已知的信息,移动平均线,价格上的容量映射变化,以及支持和阻力水平的识别等原则。”
任何交易策略的核心是强大的技术分析,映射最可能的回报率和具体结果将发生的概率。随着大数据的增长,技术分析的准确性已经提高。因此,交易者发现他们的数量更加一致,因此,他们能够降低风险。
然而,我们刚刚达到一个点,高频交易(HFT)公司加入了这一点。正如行业专家GregMacSweeney承认的那样,“交易业务中的大数据主题经常遇到嘲笑或窃笑,因为HFT玩家依赖于微秒延迟,并且利用大数据通常意味着在可接受的指标之外增加处理时间。”
这是一种缓慢变化,但HFT公司意识到速度不是一切。能够操纵数据,并找到明显的优势是一个非常有益的区分因素。
2.实时分析
如果你熟悉交易算法,那么你就会明白它与大数据的同义性。投资者TrevirNath说:“自动化过程使计算机程序能够以人类交易者无法实现的速度和频率执行金融交易。在数学模型中,算法交易提供以最佳可能的价格执行的交易,及时的交易布置,并减少由于行为因素导致的人工错误。
虽然技术分析是HFT公司的主要焦点,实时分析有潜力改变个人投资者的游戏,他们寻找与大型组织相同的强大的洞察力和访问。
关于算法交易最令人难以置信的事情是,实际上没有限制。可以使用非结构化数据和结构化数据创建算法。这意味着他们可以考虑社交媒体活动,股票数据和实时新闻,以做出直观的决策,考虑情境因素。随着这些算法的调整,行业正在看到大量的“机器人顾问”,他们通常比他们的人类同行更加聪明。
3.机器学习
大数据不仅导致形成强大的算法。它还协助机器学习的增长,这最终代表了技术的最大潜力。
通过机器学习,算法不断地提供数据,通过从过去的错误中学习,逻辑上根据过去的结果推断出新的结论,并创建基于成千上万个独特因素的新技术,随着时间的推移实现更加智能化。
人们距离拥有完美的机器提供100%准确的见解还有很长的路要走,但是人们越来越接近一个投资者或交易者做出的每一个决定,这都基于数百万个数据点的世界,这是一件好事。
大数据的作用越来越大
人们几乎没有触及大数据潜力的表面,,以及它如何能够更好地影响金融和交易。在未来的几个月和几年里,人产可以期望以更多的方式感受到影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30