
R的变量类型和常用函数
一、R的变量类型
也可以说是数据存储方式,有:
Vector: 一维阵列
Matrics: 二维阵列,其中所有元素是同一数据类型。
factor: 种类变量,可使用levels函数来规定种类变量的各级别的名称。例如:levels(factor_vector) <- c("name1", "name2",...)
Dataframe:二维阵列,每一列中的元素是同一数据类型,不同列的数据类型可以不同。
List : 一个List中可包含多个类型对象,包括List本身。
二、常用函数
seq(from,to,by): Generate sequences, by specifying the from, to and by arguments.
rep(): Replicate elements of vectors and lists.
sort(): Sort a vector in ascending order. Works on numerics, but also on character strings and logicals.
rev(): Reverse the elements in a data structures for which reversal is defined.
str(): Display the structure of any R object.
append(): Merge vectors or lists.
is.*(): Check for the class of an R object.
as.*(): Convert an R object from one class to another.
unlist(): Flatten (possibly embedded) lists to produce a vector.
三、apply函数家族
通过apply函数对结构化的数据实现某些操作,对向量(vector)或者列表(list)按照元素或元素构成的子集合进行迭代。个人认为相当于一种批处理操作。
lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
lapply和sapply将一个函数应用于一个list或者vector, 区别在于lapply以列表(list)形式返回结果,而sapply将输出结果简化为一个向量或者矩阵。
vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)
vapply类似于sapply,但是提供了参数FUN.VALUE用以指明返回值的形式,即返回值可以有预定义类型,因此更安全。
四、正则表达式(regular expression)
正则表达式不是R的专属内容,用于描述/匹配一个文本集合的表达式。通常被用来检索、替换那些符合某个模式(规则)的文本。
1.元字符(metacharacter)
一些特殊的字符在正则表达式中不在用来描述它自身,它们在正则表达式中已经被“转义”,这些字符称为元字符。
常用元字符如下:
2、字符串匹配查询函数
查询功能的函数主要有grep、grepl, 主要区别在于其输出结果格式不同,共同点是都包含正则表达式pattern和文本X这两个参数。
grepl(pattern, x) which returns TRUE when a pattern is found in the corresponding character string.
grep(pattern, x) which returns a vector of indices of the character strings that contains the pattern.
grep仅返回匹配项的下标,而grepl返回所有的查询结果,并用逻辑向量表示有没有找到匹配
3、字符串替换函数
模式替换函数主要有sub和gsub,二者的区别在于sub函数只替换文本中第一个匹配的元素,gsub则针对X中所有匹配元素。
sub(pattern, replacement, x)
gsub(pattern, replacement, x)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19