
SPSS统计基础---频率的使用
频率过程提供有助于描述多种类型的变量的统计量和图形显示。频率过程是查看数据理想的开始位置。对于频率报告和条形图,可以用升序或降序排列不同的值,也可以按其频率对类别进行排序。当变量具有许多不相同的值时,可提取频率报告。您可以使用频率(缺省值)或百分比标记图表。
示例。按行业类型划分的公司客户的分布是什么?从输出中可以了解到客户的37.5%来自政府机构,24.9% 来自公司,28.1% 来自学术机构,9.4% 来自保健行业。对于连续的定量数据(例如,销售收入),您会了解到平均产品销售额为3,576 美元,标准差为1,078 美元。
统计量和图。频率计数、百分比、累计百分比、均值、中位数、众数、和、标准差、方差、范围、最小值和最大值、均值标准误、偏度和峰度(两者都带有标准误)、四分位数、用户指定的百分位数、条形图、饼图和直方图。
数据。使用数值代码或字符串以对分类变量进行编码(名义或序数级别度量)。
假设。特别对于已排序或未排序的类别的变量,表格和百分比可以提供对所有分布中的数据都有用的描述。大多数可选摘要统计量(如均值和标准差)是基于正态理论的,它们适用于对称分布的定量变量。稳健统计量(如中位数、四分位数和百分位数)适合于可能符合或可能不符合正态假设的定量变量。
获取频率表
E 从菜单中选择:
分析> 描述统计> 频率...
选择一个或多个分类变量或定量变量。
根据需要,您可以:
单击统计量以获得定量变量的描述统计。
单击结果显示顺序的格式。
频率统计量
百分位值。一个定量变量的值,其将排序过的数据分组,以使某个百分比在上而另外一个百分比在下。四分位数(第25、50、75 个百分位数)将观察值分为四个大小相等的组。如果您想让组数不等于4,请选择n 个相等组的割点。您也可指定单个百分位数(例如,第95 个百分点,有95% 的观察值大于该值)。
集中趋势。描述分布位置的统计量,包括均值、中位数、众数和所有值的总和。
均值. 集中趋势的测量。算术平均,总和除以个案个数。
中位数. 第50 个百分位,大于该值和小于该值的个案数各占一半。如果个案个
数为偶数,则中位数是个案在以升序或降序排列的情况下最中间的两个个案的平均。中位数是集中趋势的测量,但对于远离中心的值不敏感(这与均值不同,均值容易受到少数多个非常大或非常小的值的影响)。
众数. 最频繁出现的值。如果出现频率最高的值不止一个,则每一个都是一个众
数。“频率”过程仅报告此类多个众数中最小的那个。
总和. 所有带有非缺失值的个案的值的合计或总计。
离散程度。测量数据中变异和展开的统计量,包括标准差、方差、范围、最小值、最大值和均值标准误。
标准差. 对围绕均值的离差的测量。在正态分布中,68% 的个案在均值的一倍标准差范围内,95% 的个案在均值的两倍标准差范围内。例如,在正态分布中,如果平均年龄为45,标准差为10,则95% 的个案将处于25 到65 之间。
方差. 对围绕均值的离差的测量,值等于与均值的差的平方和除以个案数减一。度量方差的单位是变量本身的单位的平方。
全距. 数值变量最大值和最小值之间的差;最大值减去最小值。
最小值. 数值变量的最小值。
最大值. 数值变量的最大值。
均值的标准误. 取自同一分布的样本与样本之间的均值之差的测量。它可以用来粗略地将观察到的均值与假设值进行比较(即,如果差与标准误的比值小于-2 或大于+2,则可以断定两个值不同)。
分布。偏度和峰度是描述分布形状和对称性的统计量。这些统计量与其标准误一起显示。
偏度. 分布的不对称性度量。正态分布是对称的,偏度值为0。具有显著正偏度值的分布有很长的右尾。具有显著的负偏度的分布有很长的左尾。作为一个指导,当偏度值超过标准误的两倍时,则认为不具有对称性。
峰度. 观察值聚集在中点周围的程度的测量。对于正态分布,峰度统计量的值为
0。正峰度值表示相对于正态分布,观察值在分布中心的聚集更多,同时尾部更薄,直到分布极值。在这一点,leptokurtic 分布的尾部比正态分布的尾部要厚。负峰度值表示相对于正态分布,观察值聚集得少并且尾部较厚,直到分布极值。在这一点,platykurtic 分布的尾部比正态分布的尾部要薄。
值是组中点。如果您的数据中的值是组中点(例如,所有年龄在30 多岁的人都被编码为35),则选择此选项以估计原始未分组的数据的中位数和百分位数。
频率图
图表类型。饼图显示各部分对整体的贡献。饼图的每个分区对应于由单个分组变量定义的组。条形图将不同值或不同类别的计数作为单独的条显示,使您可以直观地比较各个类别。直方图也有条,但它们沿着相等的区间刻度进行绘制。每个条的高度是定量变量在该区间内的值的计数。直方图显示分布的形状、中心和分布。叠加在直方图上的正态曲线有助于您判断数据是否为正态分布。
图表值。对于条形图,可以按频率计数或百分比标记刻度轴。
频率格式
排序方式。可根据数据中的实际值或根据这些值的计数(出现的频率)以升序或降序排列频率表。但是,如果您请求直方图或百分位数,则频率假定变量是定量数据并以升序显示其值。
多个变量。如果您生成多个变量的统计表,您可在单个表中显示所有变量(比较变量),或显示每个变量的独立统计量表(按变量组织输出)。排除超过n 个类别的表。此选项防止显示具有超过指定数目的值的表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18