京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这几年关于“C2B”和“大数据”的说法越来越多,大部分皇冠卖家已经知道了“从客户出发做选择”的重要性,知道了“数据驱动”的重要性。以至于不少皇冠卖家都有了自己专门的“数据研究”人员,大家不仅关注自己的数据,还关注平台的数据。
本来我觉得这是一个很欣喜的事情,不过跟一些商家深入接触后发现,发现原来很多人已经把这条路走偏了。
你用数据做什么?
对于商家来说,研究数据最主要的作用应该是两个:
1)我自己经营的怎么样;
2)让数据来指导我下一步的选择和方向。
表面上很多卖家也是这么干的,但实际操作上的做法又让人觉得很怪异。大家现在的数据工作基本上都是分成两部分:
1)关注自己的流量和ROI,以及简单的动销比;
2)关注平台流量和销量动态,了解什么做的好什么做的不好。
第一部分是基本功,在这里不多说,做好了是应该的,做不好需要提高。和本来的研究数据的目的很匹配,有了这些基本功才能保证商家对自身的经营状况有所了解。
第二部分就很搞了,不是说商家不能研究这一部分数据,而是说这部分数据本质上根本不能帮助商户达到“让数据来指导我下一步的选择和方向”的目的。
大趋势固然重要不能逆势而为,但在具体的问题上自己把握自己更重要,这跟大势无关。
对于商家来说,平台的“大数据”(比如数据魔方)只是在说这个大平台上现在什么东西好卖、别人家什么样的货卖的好、消费者到这个大平台上主要关注什么东西买什么东西。但这个大平台上有几百万的卖家,那怕是你自己这个相关品类上也有几万甚至十几万的卖家(,每一家的特点不同,每一群消费者的选择也不同,大家都卖的好不一定你就能卖好,人家能做的不一定你就能做的到。
如果跟着这个数据走,最后很可能会遭遇一个伤心的结果:当这些热销品开始不好卖的时候,人家已经卖完,而你们家还有满仓满仓的库存。
因为:这些“大数据”只能告诉你“别人什么地方做的好”,但并不能告诉“你该选择什么”。互联网的特点是变化特别快,当你发现某个“既定趋势”的时候,形势已经在悄悄的变化,当你再跟进的时候事情已经不是你发现时那个样子了。那类产品不好卖的时候,别人已经在卖尾款了,而你大量的上新,最后库存都是你家的,别人已经去玩另外一个“新趋势”了,你还在甩尾货。
所以,对于电商这个大游戏里的中小卖家来说(特别大规模的卖家除外):平台大数据仅可以指导你未来的战略方向,基本上跟你眼前的具体战术选择没有直接关系。
你的数据不在大,在于有用
每一个卖家应该有自己的“大数据”。“大数据”并不是说数据量有多大,而是数据的完整性怎么样,是不是够你所用。
对于一个皇冠卖家来说,不仅平台的大数据跟你眼前的选择没关系,你自己每年十几万的包裹数据其实也不能真正说明什么。因为你能拿到的这些数据的维度很小,只是一些硬梆梆的表象数据,不够说明问题。最多只有什么地方的人、买了我的什么商品、他们有多少人会再回来买,那怕研究的再深,也无法发现背后的原因,更无法发现下一步的选择方向。
中小卖家的“大数据”应该是跟自己的消费者互动得来,而不是通过机器计算出来,因为你并不具备这样的计算能力。
每一个做的还不错的卖家,都会有一些认可自己的老顾客和“粉丝”,这些人都是你忠诚的小伙伴儿,把他们转化到类似微信、微博这些可直接沟通的工具上,哪怕把每年10万个包裹的千分之五转化过去,也有5000个。这5000个粉丝可以告诉商家我喜欢你家的什么服务、什么衣服、什么款式、我想在你家买到什么东西,商家也可以通过数据和互动了解到自己这些客户的购买能力、购买喜好等等信息。
不管是现在很多商家做的很好的预售、新品调查、上新秒杀、会员专享,其实都不只是看起来这么简单,其背后都是有一个跟“粉丝”沉淀、和互动的过程,通过互动和沉淀项目了解,更有把握的进行选择。
对于商家来说,数据量有多大不重要,重要的是有没有相互足够了解的可以活跃互动的粉丝。10万个包裹只能告诉你眼前有多少销售额,5000个活跃粉丝足以告诉你下一步该选择什么。
当然,这5000个粉丝也不会是一下子攒起来的,瞬间起来的基本都只能靠“给便宜”得来,这些占便宜的人不会真的告诉你该选择什么。这是一个需要积累的过程,通过真心的优质服务和沟通才能真正的建立起来。
我坚信,未来的商业一定会是经过一次次实际“体验”逐渐积累起来的“粉丝经济”时代。这个粉丝经济并不只是你有多少粉丝,而是你的粉丝能够多么的信任你,多么的活跃。他们是不是从认可你,到信任你,到帮你营销和传播,到依耐你。(更多相关内容:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24