
大数据应用如此深入 征信为何还不成熟
即将在贵阳举办的2017中国国际大数据产业博览会,已经升级为全国唯一以大数据为主题的国家级博览会。与往届大会相比,今年的“数博会”除了规格上升以外,在对大数据产业的解读上也将更加深入。
如今,大数据的应用除了传统的金融、电信、制造等行业外,在社交、电商等领域的应用也逐渐深入。马云在接受外媒采访时甚至表示:“芝麻信用也可以做谈恋爱的资本,丈母娘对未来女婿说,你要和我女儿谈恋爱,给我看看你的芝麻信用评分。”
不过,在丰满的理想背后却是骨感的现实。目前,央行个人征信中心依然是国内唯一的个人征信机构。
早在2015年1月,央行官网就曾公布《关于做好个人征信业务准备工作的通知》,要求包括芝麻信用管理有限公司、腾讯征信有限公司等8家机构做好个人征信业务的准备工作,准备时间为6个月。几乎所有的人都认为这八家机构将成为我国首批商业征信机构时,两年多的事件过去,征信牌照依然没有着落。
对此,中国人民银行征信局局长万存知日前表示,没发牌照的原因有三:1、遭遇互联网金融整顿;2、个人信息保护意识增强;3、八家机构与市场需求和监管要求差距较大。不仅如此,万存知还列举了八家机构存在的三大问题:1、各自信息不共享;2、存在利益冲突;3、对征信的理念和规则了解不足。
应该说,这些原因和问题都是客观存在的。征信体系的建设更多是一个公益行为,而不是商业行为,它需要不同的机构和个人分享自己的数据,进而推动整个整个体系的完善。但对于背靠不同企业的第三方征信机构来说,商业利益如何在征信体系建设过程中获得一定意义上的平衡至关重要。正因为如此,不同机构对于自身数据看得非常重要,生怕对手掌握了这些数据,进而使自己失去竞争力。
如果说企业还需要在商业利益和企业利益上平衡的话,对于个人来说,如何保障个人隐私数据的安全就变得更加重要。尤其在今天,互联网和移动互联网的高度成熟,使得人们对于个人隐私的保护空前关注。因为从理论上讲,如果互联网巨头通过对自己搜索行为、社交网络中的聊天记录、电子商务平台上的购买记录和收货地址等等综合在一起,那么人们将毫无隐私可言。不过,对于这些涉及个人隐私的信息,各个平台都拥有良好的保护体系。可一旦加入到征信体系中,哪些数据可以为征信服务,哪些属于个人隐私数据需要保护,这样的边界仍然需要严格界定。
其实,很多时候,第三方征信机构也希望与更多的数据源进行合作,以补充自身在数据上的短板,其中央行征信局就是一个核心,因为央行掌握着每个人的金融数据,这些对于金融行业的大数据征信发展意义重大;不仅如此,第三方征信机构也希望与政府、司法、公安等众多部门进行信息共享,以便掌握更多的关键数据,比如一个人有没有违法记录、有没有经济纠纷等等,这些数据同样非常有价值。这很大程度上也牵扯到一个信息公开的问题,如果整个社会的大数据不能共享,而是分散到一个又一个部门、企业中,依据不同数据所勾勒出的征信体系都不是完善的。
而从大数据的技术角度来讲,征信体系的建设和完善早已经不再是一个难题。只是,哪些数据进入征信体系,哪些不能进入,如何保护个人隐私等等,这些原则性问题不能很好的解决,征信体系的完善也就不能实现。
事实上,大数据征信从来都不是一个单纯的技术问题,而是政治问题、军事问题、经济问题、制度问题……要解决这些问题,一方面需要各方加强信息的开放和共享,打破信息孤岛;另一方面也需要监管部门制订明确的界限和细则,对征信数据的共享和使用给出明确的边界;甚至,有必要依托不同的监管部门和商业组织,组建征信体系的国家队,与现有的央行个人征信中心互相合作、互为补充,切实推动征信体系的完善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23