
调研,那些大数据干不掉的小数据
调研就是大数据无法攻克的堡垒
“我就是喜欢你很大,可是你干不掉我的样子”,调研问卷嗨森的对R,Python,hadoop,Spark一众人等做个鬼脸
话说2017年是21世纪了吧,为啥这个中世纪时代的玩意现在还活蹦乱跳啊?
你看其他人的名字都是英文了啊,你丫还叫中文,敢不敢叫MarketReasearch装一下啊?
就没有一种大数据技术,敲个代码搭个服务器把这个还在靠纸笔OOXX的玩意干死挺挺吗?
调研有着各种各样的问题
然而确确实实,即使到了2017年
调研这种方法依然难以被取代
甚至在腾讯这种大企业还被发扬光大
到底调研的独特魅力在哪里?
调研四大优势
优势一:主动性,让死人开口
交易数据来自pos机/网站下单,
可是如果顾客不买东西怎么办?
曰:没事,还有网站互动信息。
可是如果顾客不登陆了怎么办?
曰:额,没事,还有社交网站信息,
可是如果顾客不上网发帖怎么办?
???
至此,大数据依赖的三大信息源全军覆没
这是个很现实的问题:
很多情况下,顾客都是很懒的,
他们不满,就会默默走掉。
不但不留下一片云彩,
连手都不挥一下,
特别是男顾客!
这时如果单纯依赖数据解读,
就会陷入经典的失踪飞机误区里。
抓着小问题不放,忽视大痛点。
调研则不存在这个问题,
我可以拿着用户失联前留下的联系方式,
直接找上门去问他意见。
更能用更多带套的小问题勾引他本不想说的内容。
让死人开口,就这么强大。
优势二:直观性,让活人动心
汇报会上,面对市场部各位大佬质疑的眼神,分析师紧张的说:
“我们的产品定位在中高端,然而实际销售是有偏的”
“我们目前收集的会员数据,45%集中在年收入8-12万,年龄25-30岁,学历……”
分析师叨叨叨一堆数据,市场部各位大佬一言不发眉头紧皱。
陈老师见状,在这一段汇报完后插了一句:
“简单来说,大家想过这个群体是谁吗?”
“就是给诸位修电脑的行政部的小张啊!”
“大家仔细想想他的年龄,收入,学历,工作单位,哪一条不符合”
“就这一身油光光脏衣服秃地中海,烟愁汗臭小哥,我们还有24999个”
“不知道这不是不是诸位心中的期望啊”
“我嘞个去,对哦!”台下一片笑声,吐槽声,卧槽声。
那一刻大家全懂了, 哈哈哈
调研的魅力,
就是能从枯燥抽象的数据中,
抽出典型鲜活的案例。
让人们一眼看到问题所在,
强化人们对于数据的理解。
优势三:深入性,洞察内心
虽然文本分析可以在很大程度上替代调研,
但对人性的洞察,仍然是传统方法更好。
比如一个热词:“屌丝”的背后:
即可以是在校学生的心虚;
也可以是对某些人的辱骂;
还可以是低层白领的自嘲;
又可以是中层白领的套路;
总之这些深层次的含义需要去解读。
单纯依靠文本能快速捕捉这种趋势,
但想解读这种趋势,就得靠研究者深入观察。
传统调研在这一领域有着很多深入的方法,
比如做行为日志,做跟访,做图片测试,做场景模拟,
比如在座谈会中故意激发矛盾,让人们相互争斗,暴露真性情。
这些方法背后大多有心里学实验做基础,
因此相当实用,收集素材也能多方验证。
比单纯的捕捉热词,或者分析行为路径,关注内容,
要来的快速,直接,省事,深入。
优势四:全面性,强力执行
一提到大数据就想到互联网,
想到宽带,WiFi,终端,服务器。
然而没有网络怎么办?
四五六七八线城市怎么办?
不上网的业务怎么办?
我就是想考察我的县级渠道。
我就是想搞清楚社区店的货架上到底有几瓶我的饮料。
那是我花钱买来的面位啊,不能让经销商这么糊弄过去。
大数据搞不掂,就上调研咯。
数据跑断腿也要跑回来!
敢造假?我找两波不同的人相互查一遍,哼!
调研如何与数据分析结合
调研在企业里一般有专人,专门组负责
职责有分工,数据分析师们不必事必躬亲
五个场景下,调研项目起主导作用,数据分析辅助:
一:潜在市场,潜在用户,新型概念的开发(总之没有现成数据)
二:用户主观态度,意愿,满意度了解(用户体验,用户洞察,用户满意度)
三:沉默用户的了解(强行让死人说话)
四:数据基础较差的存量市场(县级渠道,网点,门店)
五:竞品使用情况,竞品用户情况(还是没有数据)
当然更多的场景下
是数据分析师们利用小调研
理解自己的问题,丰富报告深度
可以从三个方面来思考,如何利用调研。
事前,快速找到感觉
拿到一个分析需求
没有概念的时候
可以快速做一些小型市场走访
约业务部门的人做个小访谈
迅速收集一些问题假设
建立最初的概念
需特别注意的是
有些时候老板的问题是从一个具体事件发起的
比如他亲自看到了XXX
或者业务部的某位大佬跟他讲了XXX
做这种需求的时候,更需要做一些实地调研
要具体到老板产生疑问的事件,人的身上
这样才能解读出老板真正关心的问题
事中,验证假设真伪
在看数据看的有初步想法的时候
可以直接和问题相关的部门进行沟通
验证思路是否ok
可以带着问题走访市场
简单的找一个门店,一两个顾客快速交流
明显的分析漏洞会直接暴露出来
同时业务部门,顾客,门店会给你很多新思路
在写分析建议的时候会更有灵感
不至于陷入看着柱子图
那根高就把哪根当优势
那根低就把哪根当劣势
的脑残分析逻辑中去
事后,故事打动人心
已经出了分析结论,整理汇报的时候,
把调研中发现的事件,人物,场景整理出来,
结合数据发现,作为数据的补充。
可以非常好的帮助大家理解数据,
更好地帮助我们的报告获得认可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27