京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助力互联网金融健康发展
近年来,伴随着信息技术与经济社会各领域的深度融合,全世界范围内数据量都呈现出爆发式增长的新态势。去年9月5日,国务院正式发布促进大数据发展行动纲要,从促进大数据发展的高度,提出了我国大数据的顶层设计,引导大数据发展,使大数据成为创业创新的新动力,在全社会引起广泛的反响。在此背景之下,由钱爸爸独家承办的第二届大数据金融论坛30日在深圳举办,互联网金融诚信行深圳站活动同时启动。来自国务院、人民银行、工信部、发改委、银监会、社科院、红岭创投、钱爸爸、恒昌、国盾聚亿等300余位互联网金融、大数据风控、云计算、区块链等相关行业的政府领导、专家、学者、企业家代表,共同分享大数据金融应用领域的观点和经验。
本次论坛由中国电子商务协会互联网金融研究院主办,以“大数据助力互联网金融健康发展”为焦点议题,共同探讨大数据金融行业的发展面临的现状与挑战、未来发展方向,以及如何最大化利用大数据优势为金融行业做铺垫等话题。
研讨会还关注了目前行业中比较热门的普惠金融、大数据征信、风险管理等诸多热门话题,并呼吁企业树立诚信价值观,在坚持经济效益同时做到社会效益并重。
论坛上,中国人民银行调查统计司司长盛松成对比互联网金融最近以来发生的变化、发展以及未来走势发表了自己的看法,他在发言中表示,互联网金融已经过了野蛮生长期、头脑发热期,大家也开始认识到互联网金融存在监管难、风险大等问题,但其利用现代科技手段来推动对经济薄弱环节的支持,尤其对中小微企业的支持,这都显示出其相较于传统金融的有利之处。网贷的成交量和余额增长比较快,也说明了互联网金融仍然具有较强的生命力和良好的发展前景。
互联网金融行业在未来的发展中有较大的市场前景,那么,大数据在互联网金融发展过程当中发挥着怎样的作用呢?国务院国有重点大型企业监事会主席季晓南会中表示,大数据金融将成为互联网金融重要的发展方向。“大数据金融可以为金融业的创新发展提供新动力,可以为解决金融难题问题新助力,特别是中小企业、小微企业融资难、大数据金融具有相对于传统金融企业的优势。”同时,季晓南建议,大数据金融既要考虑技术因素,也要考虑市场因素,大数据金融要以企业为主体,在本身不断创新发展的同时,更要切实加强风险管控。
工信部信息中心总工程师童晓民从对国家大数据战略角度来谈自己的感受和体会,他表示现在我们站在“互联网+、大数据”新的起跑线上,可以引领我们的生活发生变化,能够孕育发展的新思路、开辟国家治理新路径,推动行业提高核心竞争力。
大数据不仅在人们的日常生活中应用十分广泛,在互联网金融发展过程中也起到了非常关键的作用,在互联网金融发展的现阶段就更要建立完善的征信体系。中国社科院研究所所长助理杨涛强调互联网征信需要更明晰的顶层设计。大数据对于金融、对于征信起到的作用是极其大的,与此同时我们要理性的看待,一方面有助于改善过去模糊化的信用生态环境,中国社会是缺乏数字管理的社会,就是缺乏数据、缺乏数字、缺乏精准定位,这是需要改变的。与此同时,在软环境存在约束的情况下,也不能对大数据信息过于迷信。
针对大数据金融的未来发展,钱爸爸张凯也在会中从企业家的角度提出了大数据金融在企业实操中的应用以及对大数据金融的未来发展与展望。张凯认为,钱爸爸在运营中通过对后台数据的挖掘,以及对市场的行业数据的对比,会更清晰地了解到用户,会指导钱爸爸进一步为用户提供更好的服务,开展更多的产品与服务的创新。另外,对用户的行为分析还会带来对用户行为的预测,包括钱爸爸会紧随资金的流向,紧跟项目的走向,去判断用户可能未来会出现什么情况。进而会对下一步的环境进行预估。比如说,钱爸爸会根据用户对业务项目的选择喜好和偏好,结合行业数据,预估下一步行业的特点在哪,或者说用户的喜好会在什么地方发生。当然,钱爸爸也在尝试利用大数据的数据保留,包括风险防控和反欺诈体系的应用,最终达成对平台风险的把控。在谈到互联网金融的展望时,张凯说“互联网金融的未来,大数据的应用将成为主流,这一点是毋庸置疑的。大数据确确实实会影响我们的生活,甚至会影响我们未来很多的战略高度和战略决策,我们也相信大数据在未来的应用中会占据主流地位。”
大数据已经得到政府、行业、相关媒体的高度关注,相信,在各界人士的共同努力下,互联网金融企业将会运用大数据为人们的生活提供更加细化的产品和更加精细的服务!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13