
大数据助力互联网金融健康发展
近年来,伴随着信息技术与经济社会各领域的深度融合,全世界范围内数据量都呈现出爆发式增长的新态势。去年9月5日,国务院正式发布促进大数据发展行动纲要,从促进大数据发展的高度,提出了我国大数据的顶层设计,引导大数据发展,使大数据成为创业创新的新动力,在全社会引起广泛的反响。在此背景之下,由钱爸爸独家承办的第二届大数据金融论坛30日在深圳举办,互联网金融诚信行深圳站活动同时启动。来自国务院、人民银行、工信部、发改委、银监会、社科院、红岭创投、钱爸爸、恒昌、国盾聚亿等300余位互联网金融、大数据风控、云计算、区块链等相关行业的政府领导、专家、学者、企业家代表,共同分享大数据金融应用领域的观点和经验。
本次论坛由中国电子商务协会互联网金融研究院主办,以“大数据助力互联网金融健康发展”为焦点议题,共同探讨大数据金融行业的发展面临的现状与挑战、未来发展方向,以及如何最大化利用大数据优势为金融行业做铺垫等话题。
研讨会还关注了目前行业中比较热门的普惠金融、大数据征信、风险管理等诸多热门话题,并呼吁企业树立诚信价值观,在坚持经济效益同时做到社会效益并重。
论坛上,中国人民银行调查统计司司长盛松成对比互联网金融最近以来发生的变化、发展以及未来走势发表了自己的看法,他在发言中表示,互联网金融已经过了野蛮生长期、头脑发热期,大家也开始认识到互联网金融存在监管难、风险大等问题,但其利用现代科技手段来推动对经济薄弱环节的支持,尤其对中小微企业的支持,这都显示出其相较于传统金融的有利之处。网贷的成交量和余额增长比较快,也说明了互联网金融仍然具有较强的生命力和良好的发展前景。
互联网金融行业在未来的发展中有较大的市场前景,那么,大数据在互联网金融发展过程当中发挥着怎样的作用呢?国务院国有重点大型企业监事会主席季晓南会中表示,大数据金融将成为互联网金融重要的发展方向。“大数据金融可以为金融业的创新发展提供新动力,可以为解决金融难题问题新助力,特别是中小企业、小微企业融资难、大数据金融具有相对于传统金融企业的优势。”同时,季晓南建议,大数据金融既要考虑技术因素,也要考虑市场因素,大数据金融要以企业为主体,在本身不断创新发展的同时,更要切实加强风险管控。
工信部信息中心总工程师童晓民从对国家大数据战略角度来谈自己的感受和体会,他表示现在我们站在“互联网+、大数据”新的起跑线上,可以引领我们的生活发生变化,能够孕育发展的新思路、开辟国家治理新路径,推动行业提高核心竞争力。
大数据不仅在人们的日常生活中应用十分广泛,在互联网金融发展过程中也起到了非常关键的作用,在互联网金融发展的现阶段就更要建立完善的征信体系。中国社科院研究所所长助理杨涛强调互联网征信需要更明晰的顶层设计。大数据对于金融、对于征信起到的作用是极其大的,与此同时我们要理性的看待,一方面有助于改善过去模糊化的信用生态环境,中国社会是缺乏数字管理的社会,就是缺乏数据、缺乏数字、缺乏精准定位,这是需要改变的。与此同时,在软环境存在约束的情况下,也不能对大数据信息过于迷信。
针对大数据金融的未来发展,钱爸爸张凯也在会中从企业家的角度提出了大数据金融在企业实操中的应用以及对大数据金融的未来发展与展望。张凯认为,钱爸爸在运营中通过对后台数据的挖掘,以及对市场的行业数据的对比,会更清晰地了解到用户,会指导钱爸爸进一步为用户提供更好的服务,开展更多的产品与服务的创新。另外,对用户的行为分析还会带来对用户行为的预测,包括钱爸爸会紧随资金的流向,紧跟项目的走向,去判断用户可能未来会出现什么情况。进而会对下一步的环境进行预估。比如说,钱爸爸会根据用户对业务项目的选择喜好和偏好,结合行业数据,预估下一步行业的特点在哪,或者说用户的喜好会在什么地方发生。当然,钱爸爸也在尝试利用大数据的数据保留,包括风险防控和反欺诈体系的应用,最终达成对平台风险的把控。在谈到互联网金融的展望时,张凯说“互联网金融的未来,大数据的应用将成为主流,这一点是毋庸置疑的。大数据确确实实会影响我们的生活,甚至会影响我们未来很多的战略高度和战略决策,我们也相信大数据在未来的应用中会占据主流地位。”
大数据已经得到政府、行业、相关媒体的高度关注,相信,在各界人士的共同努力下,互联网金融企业将会运用大数据为人们的生活提供更加细化的产品和更加精细的服务!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13