京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助力互联网金融健康发展
近年来,伴随着信息技术与经济社会各领域的深度融合,全世界范围内数据量都呈现出爆发式增长的新态势。去年9月5日,国务院正式发布促进大数据发展行动纲要,从促进大数据发展的高度,提出了我国大数据的顶层设计,引导大数据发展,使大数据成为创业创新的新动力,在全社会引起广泛的反响。在此背景之下,由钱爸爸独家承办的第二届大数据金融论坛30日在深圳举办,互联网金融诚信行深圳站活动同时启动。来自国务院、人民银行、工信部、发改委、银监会、社科院、红岭创投、钱爸爸、恒昌、国盾聚亿等300余位互联网金融、大数据风控、云计算、区块链等相关行业的政府领导、专家、学者、企业家代表,共同分享大数据金融应用领域的观点和经验。
本次论坛由中国电子商务协会互联网金融研究院主办,以“大数据助力互联网金融健康发展”为焦点议题,共同探讨大数据金融行业的发展面临的现状与挑战、未来发展方向,以及如何最大化利用大数据优势为金融行业做铺垫等话题。
研讨会还关注了目前行业中比较热门的普惠金融、大数据征信、风险管理等诸多热门话题,并呼吁企业树立诚信价值观,在坚持经济效益同时做到社会效益并重。
论坛上,中国人民银行调查统计司司长盛松成对比互联网金融最近以来发生的变化、发展以及未来走势发表了自己的看法,他在发言中表示,互联网金融已经过了野蛮生长期、头脑发热期,大家也开始认识到互联网金融存在监管难、风险大等问题,但其利用现代科技手段来推动对经济薄弱环节的支持,尤其对中小微企业的支持,这都显示出其相较于传统金融的有利之处。网贷的成交量和余额增长比较快,也说明了互联网金融仍然具有较强的生命力和良好的发展前景。
互联网金融行业在未来的发展中有较大的市场前景,那么,大数据在互联网金融发展过程当中发挥着怎样的作用呢?国务院国有重点大型企业监事会主席季晓南会中表示,大数据金融将成为互联网金融重要的发展方向。“大数据金融可以为金融业的创新发展提供新动力,可以为解决金融难题问题新助力,特别是中小企业、小微企业融资难、大数据金融具有相对于传统金融企业的优势。”同时,季晓南建议,大数据金融既要考虑技术因素,也要考虑市场因素,大数据金融要以企业为主体,在本身不断创新发展的同时,更要切实加强风险管控。
工信部信息中心总工程师童晓民从对国家大数据战略角度来谈自己的感受和体会,他表示现在我们站在“互联网+、大数据”新的起跑线上,可以引领我们的生活发生变化,能够孕育发展的新思路、开辟国家治理新路径,推动行业提高核心竞争力。
大数据不仅在人们的日常生活中应用十分广泛,在互联网金融发展过程中也起到了非常关键的作用,在互联网金融发展的现阶段就更要建立完善的征信体系。中国社科院研究所所长助理杨涛强调互联网征信需要更明晰的顶层设计。大数据对于金融、对于征信起到的作用是极其大的,与此同时我们要理性的看待,一方面有助于改善过去模糊化的信用生态环境,中国社会是缺乏数字管理的社会,就是缺乏数据、缺乏数字、缺乏精准定位,这是需要改变的。与此同时,在软环境存在约束的情况下,也不能对大数据信息过于迷信。
针对大数据金融的未来发展,钱爸爸张凯也在会中从企业家的角度提出了大数据金融在企业实操中的应用以及对大数据金融的未来发展与展望。张凯认为,钱爸爸在运营中通过对后台数据的挖掘,以及对市场的行业数据的对比,会更清晰地了解到用户,会指导钱爸爸进一步为用户提供更好的服务,开展更多的产品与服务的创新。另外,对用户的行为分析还会带来对用户行为的预测,包括钱爸爸会紧随资金的流向,紧跟项目的走向,去判断用户可能未来会出现什么情况。进而会对下一步的环境进行预估。比如说,钱爸爸会根据用户对业务项目的选择喜好和偏好,结合行业数据,预估下一步行业的特点在哪,或者说用户的喜好会在什么地方发生。当然,钱爸爸也在尝试利用大数据的数据保留,包括风险防控和反欺诈体系的应用,最终达成对平台风险的把控。在谈到互联网金融的展望时,张凯说“互联网金融的未来,大数据的应用将成为主流,这一点是毋庸置疑的。大数据确确实实会影响我们的生活,甚至会影响我们未来很多的战略高度和战略决策,我们也相信大数据在未来的应用中会占据主流地位。”
大数据已经得到政府、行业、相关媒体的高度关注,相信,在各界人士的共同努力下,互联网金融企业将会运用大数据为人们的生活提供更加细化的产品和更加精细的服务!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31