京公网安备 11010802034615号
经营许可证编号:京B2-20210330
供应链金融大数据的应用
大数据是当下最热的词汇。在互联网条件下,信息量爆炸式增长,如果我们不能获取、整理和应用这些信息和数据,就有可能在很短的时间内落后,甚至被抛弃。在供应链金融服务领域,更是如此。
一、供应链金融服务的现状
供应链金融是运用供应链管理的理念和方法,为相互关联的企业提供金融服务的活动。主要业务模式是以核心企业的上下游企业为服务对象,以真实的交易为前提,在采购、生产、销售各环节提供金融服务。由于每家企业都有自己供应链条,展现出一个庞大的供应链网络。不同的金融企业把自己的服务产品化,赋予不同的产品名称。
在过去的十多年里,供应链金融业务出现了许多创新,第一是金融与物流两业融合。包括订单融资、保单融资、电商融资、金融物流、担保品管理、保兑仓、保理仓、贸易融资、应收账款质押融资、预付账款质押融资、进出口项下质押融资、存货质押融资、融资租赁、金融物流、供应链金融、仓单质押、动产质押、互联网金融。还有代收代付、结算、保险等。物流企业的作用在于保证货物存在和交付。
第二个创新是金融与物流进入电子商务。几乎所有电子商务公司在提供交易平台的同时提供融资平台,为买、卖双方开展质押贷款。各主要商业银行、股份制银行都推出了针对电子商务的融资产品。电子商务将颠覆传统的交易方式。一是交易不受时空限制;二是缩短交易环节;三是碎片化订单真实反映需求;四是快速交易要求快速交付;五是为小企业提供了销售市场;六是成本和售价降低。电商新模式是网上交易、网上融资、网下交割。物流业的业务方式也会改变。快速响应、快速分拣、小批量、多批次、可视化、网络化等需求,会影响物流设施的规模、布局、构造等。
第三个创新是互联网金融的出现。互联网金融是利用互联网技术完成的金融活动。它的出现“让企业家彻夜难眠”
二、大数据对供应链金融的影响
1可用于判断需求方向和需求量。
供应链上的企业,存在着紧密的关联关系。终端消费量的变动,必然会引起上游各环节的变动。大数据时代大数据可帮助我们判断一系列变动的规律。同时,我们还可以把一定时期内的流通和消费看作是一个常量,而在地区、方向、渠道、市场的分配作为变量。
2 可用于目标客户资信评估。
利用大数据,可以对客户财务数据、生产数据、电水消耗、工资水平、订单数量、现金流量、资产负债、投资偏好、成败比例、技术水平、研发投入、产品周期、安全库存、销售分配等进行全方位分析,信息透明化,能客观反映企业状况,从而提高资信评估和放贷速度。只看财报和交易数据是有风险的,因为可能造假。
3可用于风险分析、警示和控制。
大数据的优势是行情分析和价格波动分析,尽早提出预警。行业风险是最大的风险,行业衰落,行内大多企业都不景气。多控制一个环节、早预见一天,都能有效减少风险。
4可用于精准金融和物流服务。
贷款时间、期间、规模、用途、流向;仓储、运输、代采、集采、货代、保兑、中介、担保一体化运营。
三、大数据应用的条件
1、基础数据的真实性。
要使用大数据,就必需保证数据的真实性,尤其是基础数据的真实性。当前,GDP、吞吐量、货运量、仓储设施、投资额、主营收入等数据都有水分。地方GDP加总超过国家GDP,集装箱重复装卸计算吞吐量,关联企业互开发票增加销售额等,致使数据失真。因此,改革考核体制、改革统计体制已是当务之急。
2、数据要能聚焦成指标。
数据本身是枯燥的、杂乱的,但形成指标后便具有生命。科学地设定指标,确定指标间的勾稽关系,才能准确地判断事物发展的规律和路径。先行指标有重要指导作用。数据的负面影响是信息污染,影响判断。
3、不同数据体系要互联互通。
在市场化条件下,数据是资源和产品。利益分割使信息孤岛现象更为严重,甚至于公共信息都被当作部门利益而垄断起来。部门数据、行业数据、企业数据、国际数据相互割裂,大数据不能发挥应有的作用。
4、积累准确的参数。
在实际工作中,基础参数极为重要,尤其是是临界参数。参数是基准,木直中绳,参数就是木工打出的那根基线。在我国,货币发行量、货币流通量、每百平方公里道路里程、仓储业投资规模、物流园区投资规模、港口数量和吞吐规模、物流强度、投资强度、投入产出比、均缺少基准,才出现了货币超发行,通货膨胀,港口过剩,产能过剩等问题。
5、先进的数据应用理念。
如果数据是客观的,使用数据的人还要有先进的应用理念。这与经验、学识、能力有关。决策,尤其是与企业命运有关的决策,不能参杂私念和人情因素。如果我们认真追究产能过剩形成的原因、追究投资失误的原因,都与理念有关。
四、大数据下供应链金融发展的趋势
一是向信用担保方向发展。
电商企业根据自己掌握的数据,对客户的业务、信用进行分析,在安全范围内提供小量、短期融资,把沉淀在网上的无成本资金盘活。电商规模越大,沉淀资金越多。如果加上吸收存款功能,就变为金融机构;在大数据的引导下,银行业也会释放出这种灵活性,这样,信用担保就不仅仅限于大企业,而是可用于中小企业,业务范围将大大扩展。
二是向着实物担保方向发展。
任何时候,实物担保都不可或缺。它是电商融资和银行融资的安全底线,要保证实物的真实性和安全性,需要物流企业与之配合。
三是商贸、金融和物流三方合作建设供应链金融平台。
平台是大数据的汇集者。交易平台与物流平台集成、与支付系统集成、与交易融资系统集成,达到信息流、资金流、物流、商流的无缝隙连接;确保交易资源真实可靠、贸易行为真实可靠、担保物变现渠道畅通、担保物价格波动监控实时等。
综上所述,大数据正在影响和改变我们的时代,供应链金融将是其最大的受益者,它把交易变得更安全、快速、可靠,把供应链连成网络,把经济引入“计划”,金融“润滑”更加有效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10