京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一个大数据应用是如何炼成的
经历了多年的BI专题应用建设,有幸能在一个传统企业里探索大数据应用的建设过程,发现了很多不一样的地方,获得了不同的感受,在此以一个真实的案例的建设过程来品味其中的不同,也许能获得一些启示。
课题是怎么来的?
大数据应用最大的挑战,就是未来的不确定性,因此,传统公司动辄提前半年进行投资预算规划的方式是不太适合大数据的。
做大数据几年,虽然说现在靠谱的大数据的商业模式也就在广告、金融、公益等方面,但真要下决心干某个大数据应用项目,其突发性、偶然性也非常强,因为对于大数据这个不成熟事物,无论是哪类公司,观望占了很大部分,对大数据的质疑有之,对于大数据安全的惶恐有之,对于合作模式的疑惑有之,更多的是不停的提出想法,不停的被否定。
企业顺应大势成立了大数据团队,最痛苦的是不知道干什么,什么能干,什么不能干,也没啥可借鉴的经验,这跟当前创业公司也类似吧,不知道哪种模式是靠谱的。
大数据几乎无所不能,但真要做起来,其实当前是能者寥寥,虽然趋势不可挡,但这一波搞大数据应用的,似乎大多要死在黎明前,一个概念从提出到最终普世大众,的确路慢慢儿修远兮。
今天要聊的,是个公益课题,电话反欺诈,课题有一定的偶然性,安全部门提到了,问我们能不能做做看,感觉社会意义很大,比如腾讯有反欺诈盒子,360有拦截系统,本来某公司希望来做这个课题,但综合各方面因素,还是决定自己做。
作出这个决策的实际一天不到,所以决定自己做,基于以下几个因素:
一是这个大数据应用是有显著效益的。
二是很好评估,不像很多BI应用产出无法评估,备受质疑 。
三是公司大数据平台建立了,提供了基础条件。
四是自主建模团队建立了一年多了,不需要太依赖合作伙伴,因此也无需走那套冗长的招标流程,失败的代价也会小。团队如何组建?
跟传统的安排不同,抛出这个课题后,主动接受这个挑战的,却是一名从一线刚过来的同事,面对不确定性,想来大多数有资历的员工也会犹豫老半天吧,这个也有一定偶然性。
谷歌讲到了招聘人才,提到了无论多大代价也要找到创意精英,而做大数据,更加需要,需要主动型的创意精英,如果传统企业每个人仍然像传统那样局限在自己一亩三分地,很难有创新突破。
很幸运,我们有一只黑天鹅。
这种自愿组队模式的确有很大的好处,不按计划分配,尊重个人的意愿,更能激发人的主动性,团队组建也非常快,当天组队,第二天就开干,不存在类似项目的繁琐流程。
虽然团队成立有一定的偶然性,但的确与与企业近年来在大数据组织创新、人才引进和人员流动上的努力分不开。
假如没有大数据组织的成立,谁牵头都是个问题;假如不扔掉传统的包袱,很难有人专心做这个;假如没有企业内的人才流动和外部人才的引入,我们也干不了这个事。
平台资源如何解决?
在那个传统BI小型机时代,要做一个项目,抛开硬件资源环境的投资立项过程不说,光是一个新项目的集成估计也不止一个月。
而这个项目不同之处是:
一是基于大数据平台的租户能力,资源申请所见即所得,加上流程,一周内全部搞定。
二是提供的组件较为丰富,特别是流处理资源的快速提供,为反欺诈的实时性提供了坚实的基础,换在几年前基本不可能 。
三是公司技术团队的保障,使得大多技术问题得以尽快解决,这也有赖于公司在大数据平台上的末雨绸缪。
某人说过,凡是能用钱解决的问题都不是问题,但技术这个东西,虽然用钱的确可能解决,但对于大多数公司,钱都是个大问题,因此技术问题的解决又是何其艰难。
比如我们碰到Kafka的一些问题,长期难解决,大多企业的机制流程恐怕也不允许随便开价100万招个技术专家来解决吧,传统企业的自我技术进步是部血泪史,外面的专家开价开不起,自己的专家起来了,又怕被人家挖。
开发历程
敏捷开发现在提得很多了, 但感觉以前BI的建设就是最大的敏捷,最极致的情况,一个人搞定需求、开发、上线和维护,当然,现在软件工程的确还是要靠分工协作,需要一套方法论来解决显性迭代和维护配合的问题。
大数据创新太特殊了,没必要循规蹈矩,抛开全部的束缚,一切要为速度让步。原因是失败可能性很大,速度越快成本越低,同时既然对于公司原有业务没有影响,因此可以放手去干,什么文档都可以不要,什么既定流程都可以不遵守,反正光脚不怕穿鞋的。
因此,这个课题做的非常快。
第10天,做出一个反欺诈简单模型,包括了案例分析、数据准备、数据建模及验证等,我们的观点是第一个版本可以粗糙一点,希望尽快验证这个事情的可行性,否则一切都是徒劳,因此就是讨论和验证数据。
当时规定两个礼拜如果出不了结果,就会放弃,这类应用失败可能性很高, 但船小好调头,以后做一些创新,都建议给创新做个时间止损点。
第25天,生产完成部署,也就是具备系统支撑能力, 除了系统部署方案需要专业部门把关,其他基本是能省就省,当时的想法是,这类创新项目最好一个月就能搞上线,起码能测试吧,相对以前BI应用项目动辄半年甚至1年的节奏,的确大不同。
创新,速度始终是王道,因此日报变成刚需,也回忆起了某位离职运营商去创业的一个领导,他说每天凌晨就要看昨天的日报,以便安排当天的工作,我们可能做不到这么疯狂,但日报的节奏是对的。
第30天,一直在外呼现场进行验证迭代,直到36天,获得认可为止,以后就是持续调优,但这个数据已经可以投入生产了。一般电话诈骗很难在事中干预,但这个模型做到了,准确度达到90%以上,通过实时事中干预挽回收入损失超千万。
这个应用就是中国移动的天盾大数据反欺诈系统,它就是这么诞生的,没有什么大汇报,没有什么流程,就是很轻很轻的来了。
现在算法还有很多问题,反欺诈矛与盾的争夺是很艰辛的,面上的风光底下是每天建模师的艰苦卓绝的努力,上了很多新算法,很多很多失败,拉低了成功率,对于这个大家是异常焦虑的,群里总是不停的讨论,大家都知道这个是核心竞争力,路还很长,还需要坚持。
小结
这个应用还难言成功,只是传统企业在大数据应用上的一次不同的尝试,但不管怎样,互联网快速迭代的那套的确是给了很大的启示,自己做了,才知道原来的差距是如此巨大,自己的能力是如此脆弱。
从课题的角度讲,要认识到大数据这个事物的不确定性,选择它具有偶然性,没有规划能预料到这个,当前大数据变现商业模式也并不成熟,不要奢望投资大数据马上有产出,也许能力储备是第一位的。
从组织的角度讲,大数据人才属于稀缺人才,要么打破原有框架,不拘一格外部找人才,要么充分企业内挖潜,让人员能流动起来。流动的人才有一个特点,即至少有一颗骚动的心,主动性对于做成功一件事极为重要。
从能力的角度讲,假如要向大数据转型,则还是要对“没有一个大数据公司,能依靠合作伙伴获得成功”这句话有所敬畏,大数据的核心能力要掌握在自己手里。
从平台的角度讲,如果没有大数据平台的建立,这个项目能够有效果也许是半年以后的事情,但机会稍纵即逝,没人会等你这么久,因此此类基础设施建设不能犹豫,“书到用时方恨少”。
从开发的角度讲,先设定一个小目标,搞他个十万八万的,只要有点看得见的产出就行啊,快速迭代,始终是王道,失败了也没什么大不了,我们缺的就是经验,多头并行也不是不可以,只要有足够的创意精英。
当然说易行难,以上几点对于大多数公司来说是如此不易,也不能以一个应用的成功与否说明任何问题,大数据要成功,就像黑天鹅,有一定偶然性,但如果连准备的勇气都没有,没有一点实质改革的动作,就没有任何成功的可能了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21