京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业利好频出概念股将成为“飞猪”
大数据行业利好消息不断,相关概念股成为市场焦点。分析认为,随着互联网的发展,海量数据连通变成现实,大数据行业将迎来爆发的高潮。相关提供IT基础设施和应用解决方案、从事大数据采集和拥有数据资源的企业将获得高速扩张的机遇,概念股有望成为市场上的“飞猪”。
大数据政策将密集出台
日前,工信部信息化和软件服务业司司长陈伟表示,工信部支持大数据技术和产业创新发展,提升大产业支撑能力,培育新业态新模式。工信部除制定《大数据产业“十三五”发展规划》外,还将出台促进大数据产业发展的推进计划。
据介绍,工信部将组织实施“大数据关键技术及产品研发与产业化工程”,通过相关项目和资金引导支持关键技术产品研发及产业化,同时开发面向工业、电信、金融、交通、医疗等数据密集型行业的大数据应用解决方案。
其实,大数据产业近期可谓政策利好不断。日前,国务院印发《促进大数据发展行动纲要》,提出未来5至10年我国大数据发展和应用应实现的目标,到2020年,我国将形成一批具有国际竞争力的大数据处理、分析、可视化软件和硬件支撑平台等产品;并且培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。
事实上,自2014年3月“大数据”首次写入《政府工作报告》以来,政府层面一直在推进大数据产业的建设,相应的配套政策也在相继出炉。今年7月下发的《国务院关于积极推进“互联网+”行动的指导意见》中,所涉及的11项重点行动几乎全部提到对于大数据的应用,从根本上肯定了大数据在推动互联网与实体经济融合中的重要作用。
业内人士认为,大数据已经成为国家竞争力的重要体现,预计大数据行业的政策将会密集出台。不同于基础软件行业处于追逐国际主流趋势,我国大数据产业在国际竞争中已崭露头角。“相关提供IT基础设施和应用解决方案、从事大数据采集和拥有数据资源的企业,将获得高速扩张的机遇。”
民生证券广州营业部首席投顾赵金伟表示,从经济发展阶段来看,如果说第一阶段是通过规模化生产来解决现实经济的“供不应求”的状况的话,中国经济即将进入第二个发展阶段亦即柔性化生产来解决当前经济“供过于求”的问题,而柔性化生产的也就是去满足客户的个性化需求,使生产更具有针对性。而柔性化生产实现的基础和前提就是要准确识别客户需求,而实现这个功能最重要的就是“数据”,只有掌握足够多的数据并进行相应的数据分析,才能生产出满足客户不同需求的产品,“数据就是财富”。
“大数据产业未来有望成为带动经济发展的主要引擎,其作用类似中国的房地产与汽车产业。”赵金伟指出,发展大数据第一离不开数据采集,数据采集必然将带动电子相关行业软硬件设备方面采购投入;数据分析必然会带动云计算、超级计算机服务器方面使用;分析的数据将指导企业生产更具有针对性满足客户需求,更有效促进和带动各个行业发展。
大数据产业将迎来黄金增长期
“数据已成为战略性资源。谁拥有更多数据,谁就拥有未来。”分析人士指出。随着中央不断加大力度推动数据开放,大数据产业商机无限,相关概念股有望成为资本上市的“飞猪”。东吴证券(601555,股吧)认为,大数据产业化高速发展,数据安全上升到新的高度。随着大数据的产业化发展,大数据从某种程度上已成为互联网经济的生产要素之一。
分析认为,在未来5到10年,大数据产业将迎来黄金增长期。根据国家金融信息中心指数研究院发布报告显示,2016年我国大数据市场规模预计将达238亿美元。贵阳大数据交易所总裁王叁寿是这次《纲要》的起草人之一。在他看来,《促进大数据发展行动纲要》的作用是要激活中国大数据的资产价值,未来我国大数据的市场规模将达到上万亿元。
“我们说大数据本身作为一种资产,它是无处不在的,但是,原来在没有《大数据发展纲要》这样一个顶层设计的时候,各级地方政府是没有把政府手里的数据资产激活的。政府手里掌握着大量的数据资产、数据资源,一旦把这个价值释放出来,我相信整个市场的规模会产生上万个亿,甚至成为继互联网以后最重要的一个产业。”王叁寿称。
银河证券分析师沈海兵指出,行动纲要政策出台是一个重要的里程碑,大数据行业迎来加速发展期,相关基础设施投资建设将迎来高潮。华创证券则认为,大数据领域政策频出,拥有数据源及分析技术的公司得到难得的发展机遇,整个大数据板块有望成为未来几年的持续成长领域。
而对于大数据行业的投资机会,赵金伟建议可从以下思路角度参与:(一)大数据产业布局带来的设备需求相关概念个股。大数据产业离不开超级服务器、超级存储设备等,这是大数据布局最先收益的行业。(二)行业内具有较好数据来源的上市公司。数据也有行业壁垒,对行业熟悉熟悉,行业数据来源广泛,尤其与政府相关部门有较长合作时间的上市公司,有望在“数字政务”、“智慧城市”建设中受益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22