京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业利好频出概念股将成为“飞猪”
大数据行业利好消息不断,相关概念股成为市场焦点。分析认为,随着互联网的发展,海量数据连通变成现实,大数据行业将迎来爆发的高潮。相关提供IT基础设施和应用解决方案、从事大数据采集和拥有数据资源的企业将获得高速扩张的机遇,概念股有望成为市场上的“飞猪”。
大数据政策将密集出台
日前,工信部信息化和软件服务业司司长陈伟表示,工信部支持大数据技术和产业创新发展,提升大产业支撑能力,培育新业态新模式。工信部除制定《大数据产业“十三五”发展规划》外,还将出台促进大数据产业发展的推进计划。
据介绍,工信部将组织实施“大数据关键技术及产品研发与产业化工程”,通过相关项目和资金引导支持关键技术产品研发及产业化,同时开发面向工业、电信、金融、交通、医疗等数据密集型行业的大数据应用解决方案。
其实,大数据产业近期可谓政策利好不断。日前,国务院印发《促进大数据发展行动纲要》,提出未来5至10年我国大数据发展和应用应实现的目标,到2020年,我国将形成一批具有国际竞争力的大数据处理、分析、可视化软件和硬件支撑平台等产品;并且培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。
事实上,自2014年3月“大数据”首次写入《政府工作报告》以来,政府层面一直在推进大数据产业的建设,相应的配套政策也在相继出炉。今年7月下发的《国务院关于积极推进“互联网+”行动的指导意见》中,所涉及的11项重点行动几乎全部提到对于大数据的应用,从根本上肯定了大数据在推动互联网与实体经济融合中的重要作用。
业内人士认为,大数据已经成为国家竞争力的重要体现,预计大数据行业的政策将会密集出台。不同于基础软件行业处于追逐国际主流趋势,我国大数据产业在国际竞争中已崭露头角。“相关提供IT基础设施和应用解决方案、从事大数据采集和拥有数据资源的企业,将获得高速扩张的机遇。”
民生证券广州营业部首席投顾赵金伟表示,从经济发展阶段来看,如果说第一阶段是通过规模化生产来解决现实经济的“供不应求”的状况的话,中国经济即将进入第二个发展阶段亦即柔性化生产来解决当前经济“供过于求”的问题,而柔性化生产的也就是去满足客户的个性化需求,使生产更具有针对性。而柔性化生产实现的基础和前提就是要准确识别客户需求,而实现这个功能最重要的就是“数据”,只有掌握足够多的数据并进行相应的数据分析,才能生产出满足客户不同需求的产品,“数据就是财富”。
“大数据产业未来有望成为带动经济发展的主要引擎,其作用类似中国的房地产与汽车产业。”赵金伟指出,发展大数据第一离不开数据采集,数据采集必然将带动电子相关行业软硬件设备方面采购投入;数据分析必然会带动云计算、超级计算机服务器方面使用;分析的数据将指导企业生产更具有针对性满足客户需求,更有效促进和带动各个行业发展。
大数据产业将迎来黄金增长期
“数据已成为战略性资源。谁拥有更多数据,谁就拥有未来。”分析人士指出。随着中央不断加大力度推动数据开放,大数据产业商机无限,相关概念股有望成为资本上市的“飞猪”。东吴证券(601555,股吧)认为,大数据产业化高速发展,数据安全上升到新的高度。随着大数据的产业化发展,大数据从某种程度上已成为互联网经济的生产要素之一。
分析认为,在未来5到10年,大数据产业将迎来黄金增长期。根据国家金融信息中心指数研究院发布报告显示,2016年我国大数据市场规模预计将达238亿美元。贵阳大数据交易所总裁王叁寿是这次《纲要》的起草人之一。在他看来,《促进大数据发展行动纲要》的作用是要激活中国大数据的资产价值,未来我国大数据的市场规模将达到上万亿元。
“我们说大数据本身作为一种资产,它是无处不在的,但是,原来在没有《大数据发展纲要》这样一个顶层设计的时候,各级地方政府是没有把政府手里的数据资产激活的。政府手里掌握着大量的数据资产、数据资源,一旦把这个价值释放出来,我相信整个市场的规模会产生上万个亿,甚至成为继互联网以后最重要的一个产业。”王叁寿称。
银河证券分析师沈海兵指出,行动纲要政策出台是一个重要的里程碑,大数据行业迎来加速发展期,相关基础设施投资建设将迎来高潮。华创证券则认为,大数据领域政策频出,拥有数据源及分析技术的公司得到难得的发展机遇,整个大数据板块有望成为未来几年的持续成长领域。
而对于大数据行业的投资机会,赵金伟建议可从以下思路角度参与:(一)大数据产业布局带来的设备需求相关概念个股。大数据产业离不开超级服务器、超级存储设备等,这是大数据布局最先收益的行业。(二)行业内具有较好数据来源的上市公司。数据也有行业壁垒,对行业熟悉熟悉,行业数据来源广泛,尤其与政府相关部门有较长合作时间的上市公司,有望在“数字政务”、“智慧城市”建设中受益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20